Ronan Grimes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4202407/publications.pdf

Version: 2024-02-01

71	887	17 h-index	27
papers	citations		g-index
71	71	71	666
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A review of steady-state thermal and mechanical modelling on tubular solar receivers. Renewable and Sustainable Energy Reviews, 2020, 119, 109591.	16.4	47
2	Two-phase flow regime identification through local temperature mapping. Experimental Thermal and Fluid Science, 2020, 115, 110077.	2.7	5
3	Enhanced performance of air-cooled thermal power plants using low temperature thermal storage. Applied Energy, 2019, 250, 1673-1685.	10.1	7
4	Sodium receiver designs for integration with high temperature power cycles. Energy, 2019, 187, 115994.	8.8	10
5	Integrated optical-thermal-mechanical model for investigations into high temperature sodium receiver operation. Solar Energy, 2019, 194, 751-765.	6.1	12
6	Levelized cost of electricity evaluation of liquid sodium receiver designs through a thermal performance, mechanical reliability, and pressure drop analysis. Solar Energy, 2018, 166, 472-485.	6.1	33
7	Thermal and mechanical analysis of a sodium-cooled solar receiver operating under a novel heliostat aiming point strategy. Applied Energy, 2018, 230, 590-614.	10.1	25
8	Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers. Renewable Energy, 2018, 129, 150-167.	8.9	23
9	Thermal and flow characteristics of a single-row circular-finned tube heat exchanger under elevated free-stream turbulence. International Journal of Heat and Fluid Flow, 2016, 57, 48-57.	2.4	4
10	Pressure drop analysis of steam condensation in air-cooled circular tube bundles. Applied Thermal Engineering, 2015, 87, 106-116.	6.0	17
11	The Influence of the Steam-side Characteristics of a Modular Air- cooled Condenser on CSP Plant Performance. Energy Procedia, 2014, 49, 1450-1459.	1.8	13
12	Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser. Energy, 2014, 69, 378-391.	8.8	34
13	Design and Testing of a Novel Air-cooled Condenser for Concentrated Solar Power Plants. Energy Procedia, 2014, 49, 1439-1449.	1.8	15
14	A theoretical and experimental investigation into the thermodynamic performance of a 50ÂMW power plant with a novel modular air-cooled condenser. Applied Thermal Engineering, 2014, 71, 119-129.	6.0	33
15	The effect of wind on the optimal design and performance of a modular air-cooled condenser for a concentrated solar power plant. Energy, 2014, 68, 886-895.	8.8	35
16	A Compact Modeling Approach to Enhance Collaborative Design of Thermal-Fluid Systems. Journal of Electronic Packaging, Transactions of the ASME, 2014, 136, .	1.8	3
17	Finless Heat Sinks, High Performance and Low Cost for Low Profile Cooling Applications. Journal of Thermal Science and Engineering Applications, 2013, 5, .	1.5	1
18	Reduced Power Precision Temperature Control Using Variable Conductance Heat Pipes. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3, 2048-2058.	2.5	3

#	Article	IF	Citations
19	Experimental and numerical investigation of the velocity profiles through a porous medium downstream of a sharp bend. , 2012 , , .		1
20	Optimization analysis of innovative modular air-cooled condensers for CSP plants., 2012,,.		3
21	Steam-Side Characterisation of a Modular Air-Cooled Condenser. , 2012, , .		6
22	Performance Analysis of a Modular Air Cooled Condenser for a Concentrated Solar Power Plant. , 2012, , .		4
23	Development of Compact Thermal–Fluid Models at the Electronic Equipment Level. Journal of Thermal Science and Engineering Applications, 2012, 4, .	1.5	9
24	FINLESS Heat Sinks, High Performance and Low Cost for Low Profile Cooling Applications., 2011,,.		1
25	Influence of the Flow From an Axial Fan on the Performance of a Heat Exchanger. , 2011, , .		4
26	Flow Distribution Measurements From an Air Cooled Condenser in a ~400MW Power Plant. , 2011, , .		6
27	Flat plate heat transfer with impinging axial fan flows. International Journal of Heat and Mass Transfer, 2010, 53, 5629-5638.	4.8	21
28	Active cooling of a mobile phone handset. Applied Thermal Engineering, 2010, 30, 2363-2369.	6.0	56
29	Viscous Scaling Phenomena in Miniature Centrifugal Flow Cooling Fans: Theory, Experiments and Correlation. Journal of Electronic Packaging, Transactions of the ASME, 2010, 132, .	1.8	10
30	Jets and rotary flows for single-phase liquid cooling: An overview of some recent experimental findings. , $2010, , .$		3
31	Thermal Performance of Two and Three Dimensional Radial Flow Heat Sinks. , 2009, , .		0
32	Profile Scaling of Miniature Centrifugal Fans. Heat Transfer Engineering, 2009, 30, 130-137.	1.9	22
33	Thermal Analysis of Miniature Low Profile Heat Sinks With and Without Fins. Journal of Electronic Packaging, Transactions of the ASME, 2009, 131, .	1.8	13
34	Acoustic Emissions From Active Cooling Solutions for Portable Devices. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 776-783.	1.3	8
35	An Experimental Investigation of the Flow Fields Within Geometrically Similar Miniature-Scale Centrifugal Pumps. Journal of Fluids Engineering, Transactions of the ASME, 2009, 131, .	1.5	10
36	An experimental study on the performance of miniature heat sinks for forced convection air cooling. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	3

#	Article	IF	Citations
37	Thermal Management of Low Profile Electronic Equipment Using Radial Fans and Heat Sinks. Journal of Heat Transfer, 2008, 130, .	2.1	32
38	The Effect of Reynolds Number on Microaxial Flow Fan Performance. Journal of Fluids Engineering, Transactions of the ASME, 2008, 130, 101101.	1.5	19
39	Acoustic emissions from active cooling solutions for portable devices. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	2
40	The performance of active cooling in a mobile phone. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	3
41	The Effects of Reynolds Number on the Aerodynamic Performance of Geometrically Similar Fans. , 2008, , .		1
42	On the Performance of Miniature Centrifugal Fans With Varying Blade Cord Length., 2008,,.		1
43	An Analysis of the Flow Fields Within Geometrically-Similar Miniature Scale Centrifugal Pumps. , 2008, , .		1
44	Compatibility of Segmenting Fluids in Continuous-Flow Microfluidic PCR. Journal of Medical Devices, Transactions of the ASME, 2007, 1, 241-245.	0.7	1
45	The Effects of Diameter and Rotational Speed on the Aerodynamic Performance of Low Profile Miniature Radial Flow Fans. , 2007, , .		6
46	Scaling of Flow Characteristics and Power Consumption With Profile Height for Miniature Centrifugal Fans., 2007,,.		4
47	PIV Measurements of the Effects of Geometric Scale on Electronics Cooling Axial Fan Flow. , 2007, , .		2
48	Low profile fan and heat sink thermal management solution for portable applications. International Journal of Thermal Sciences, 2007, 46, 1182-1190.	4.9	38
49	Interaction of quantitative PCR components with polymeric surfaces. Biomedical Microdevices, 2007, 9, 261-266.	2.8	26
50	PIV measurements of flow within plugs in a microchannel. Microfluidics and Nanofluidics, 2007, 3, 463-472.	2.2	78
51	On the Characterisation of Finned and Finless Heat Sinks for Portable Electronics., 2007,,.		2
52	An Experimental and Theoretical Investigation of the Pumping Performance of Geometrically Similar Flow Fields Within Miniature-Scale Centrifugal Pumps. , 2007, , .		0
53	Characterisation of a Variable Conductance Heat Pipe Prototype for a Photonic Application., 2007,,.		3
54	Thermal Management of Low Profile Applications. , 2007, , .		1

#	Article	IF	Citations
55	An Experimental Investigation of Flow Fields Within Miniature Scale Centrifugal Pumps., 2006,, 81.		2
56	Design of a Variable Conductance Heat Pipe for a Photonic Component., 2006,, 143.		4
57	Influence of segmenting fluids on efficiency, crossing point and fluorescence level in real time quantitative PCR. Biomedical Microdevices, 2006, 8, 59-64.	2.8	13
58	Film Thickness for Two Phase Flow in a Microchannel., 2006,, 207.		4
59	The Effect of Reynolds Number on the Aerodynamic Performance of Micro Radial Flow Fans. , 2005, , 549.		9
60	Segmenting Fluid Effect on PCR Reactions in Microfluidic Platforms. Biomedical Microdevices, 2005, 7, 269-272.	2.8	12
61	Effect of Geometric Scaling on Aerodynamic Performance. AlAA Journal, 2005, 43, 2293-2298.	2.6	16
62	Constructal Theory of the Minimum Requirements for Forced Convection Cooling Solutions. , 2005, , 711.		2
63	A Micromixer Based Upon Buoyancy. , 2005, , 223.		O
64	The Response of Portable Electronics to Transient Conditions of Temperature and Humidity., 2005,,.		0
65	Optical measurement of electronic system air flow and temperature distribution. Journal of Optics, 2004, 6, 617-626.	1.5	12
66	Air Flow and Heat Transfer in Fan Cooled Electronic Systems. Journal of Electronic Packaging, Transactions of the ASME, 2004, 126, 124-134.	1.8	20
67	A Theoretical and Experimental Investigation of the Scaling of Micro Fan Performance., 2003,, 553.		2
68	Forced Convection Board Level Thermal Design Methodology for Electronic Systems. Journal of Electronic Packaging, Transactions of the ASME, 2001, 123, 120-126.	1.8	12
69	Modeling Electronic Cooling Axial Fan Flows. Journal of Electronic Packaging, Transactions of the ASME, 2001, 123, 112-119.	1.8	46
70	The effect of fan operating point and location on temperature distribution in electronic systems. , 0, ,		8
71	Transient hygrothermal behaviour of portable electronics. , 0, , .		5