Helena Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4201340/publications.pdf Version: 2024-02-01

HELENA FEDDELDA

#	Article	IF	CITATIONS
1	Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102482.	1.7	17
2	Development of alginate-based hydrogels for blood vessel engineering. Materials Science and Engineering C, 2022, 134, 112588.	3.8	15
3	Erythrocyte-derived liposomes for the treatment of inflammatory diseases. Journal of Drug Targeting, 2022, 30, 873-883.	2.1	2
4	Microfluidic-driven mixing of high molecular weight polymeric complexes for precise nanoparticle downsizing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102560.	1.7	6
5	Biofunctionalized Liposomes to Monitor Rheumatoid Arthritis Regression Stimulated by Interleukinâ€⊋3 Neutralization. Advanced Healthcare Materials, 2021, 10, e2001570.	3.9	21
6	Modulating inflammation through the neutralization of Interleukin-6 and tumor necrosis factor-α by biofunctionalized nanoparticles. Journal of Controlled Release, 2021, 331, 491-502.	4.8	9
7	A New Chalcone Derivative with Promising Antiproliferative and Anti-Invasion Activities in Glioblastoma Cells. Molecules, 2021, 26, 3383.	1.7	13
8	Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomaterials Science and Engineering, 2021, 7, 3229-3241.	2.6	17
9	Cellular Uptake of Three Different Nanoparticles in an Inflammatory Arthritis Scenario versus Normal Conditions. Molecular Pharmaceutics, 2021, 18, 3235-3246.	2.3	9
10	Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities. Biomedicine and Pharmacotherapy, 2021, 140, 111680.	2.5	8
11	Biomimetic and cell-based nanocarriers – New strategies for brain tumor targeting. Journal of Controlled Release, 2021, 337, 482-493.	4.8	27
12	A biocompatible and injectable hydrogel to boost the efficacy of stem cells in neurodegenerative diseases treatment. Life Sciences, 2021, 287, 120108.	2.0	8
13	In silico and in vitro antioxidant and cytotoxicity evaluation of oxygenated xanthone derivatives. Arabian Journal of Chemistry, 2020, 13, 17-26.	2.3	26
14	Phospholipidâ€induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 160-172.	1.3	23
15	Sardine Roe as a Source of Lipids To Produce Liposomes. ACS Biomaterials Science and Engineering, 2020, 6, 1017-1029.	2.6	9
16	Growing evidence supporting the use of mesenchymal stem cell therapies in multiple sclerosis: A systematic review. Multiple Sclerosis and Related Disorders, 2020, 38, 101860.	0.9	13
17	Dual-functional liposomes for curcumin delivery and accelerating silk fibroin hydrogel formation. International Journal of Pharmaceutics, 2020, 589, 119844.	2.6	21
18	Antioxidant and Anti-Inflammatory Activities of Cytocompatible Salvia officinalis Extracts: A Comparison between Traditional and Soxhlet Extraction. Antioxidants, 2020, 9, 1157.	2.2	27

Helena Ferreira

#	Article	IF	CITATIONS
19	Exploring the Gelation Mechanisms and Cytocompatibility of Gold (III)-Mediated Regenerated and Thiolated Silk Fibroin Hydrogels. Biomolecules, 2020, 10, 466.	1.8	8
20	Yicathins B and C and Analogues: Total Synthesis, Lipophilicity and Biological Activities. ChemMedChem, 2020, 15, 749-755.	1.6	12
21	Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opinion on Drug Delivery, 2019, 16, 795-813.	2.4	32
22	Influence of PDLA nanoparticles size on drug release and interaction with cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 482-493.	2.1	12
23	Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids and Surfaces B: Biointerfaces, 2018, 167, 310-317.	2.5	12
24	Interleukin-6 Neutralization by Antibodies Immobilized at the Surface of Polymeric Nanoparticles as a Therapeutic Strategy for Arthritic Diseases. ACS Applied Materials & Interfaces, 2018, 10, 13839-13850.	4.0	35
25	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115.	2.9	10
26	The Role of Natural-Based Biomaterials in Advanced Therapies for Autoimmune Diseases. Advances in Experimental Medicine and Biology, 2018, 1077, 127-146.	0.8	2
27	Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nature Microbiology, 2018, 3, 791-803.	5.9	66
28	A biologically active delivery material with dried-rehydrated vesicles containing the anti-inflammatory diclofenac for potential wound healing. Journal of Liposome Research, 2016, 26, 269-275.	1.5	8
29	Deformable Liposomes for the Transdermal Delivery of Piroxicam. Journal of Pharmaceutics & Drug Delivery Research, 2015, 04, .	0.0	4
30	Functionalization of gauzes with liposomes entrapping an anti-inflammatory drug: A strategy to improve wound healing. Reactive and Functional Polymers, 2013, 73, 1328-1334.	2.0	26
31	Woundâ€healing evaluation of entrapped active agents into protein microspheres over cellulosic gauzes. Biotechnology Journal, 2012, 7, 1376-1385.	1.8	11
32	Protein disulphide isomerase-induced refolding of sonochemically prepared Ribonuclease A microspheres. Journal of Biotechnology, 2012, 159, 78-82.	1.9	3
33	Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System. Molecular Pharmaceutics, 2012, 9, 3079-3088.	2.3	40
34	Sonochemical Proteinaceous Microspheres for Wound Healing. Advances in Experimental Medicine and Biology, 2012, 733, 155-164.	0.8	10
35	Protein microspheres as suitable devices for piroxicam release. Colloids and Surfaces B: Biointerfaces, 2012, 92, 277-285.	2.5	30
36	Sonoproduction of Liposomes and Protein Particles as Templates for Delivery Purposes. Biomacromolecules, 2011, 12, 3353-3368.	2.6	46

Helena Ferreira

#	Article	IF	CITATIONS
37	Effect of ultrasound parameters for unilamellar liposome preparation. Ultrasonics Sonochemistry, 2010, 17, 628-632.	3.8	91
38	Antioxidant Activity of Vitamin E and Trolox: Understanding of the Factors that Govern Lipid Peroxidation Studies In Vitro. Food Biophysics, 2009, 4, 312-320.	1.4	82
39	Effect of Nonsteroidal Anti-Inflammatory Drugs on the Cellular Membrane Fluidity. Journal of Pharmaceutical Sciences, 2008, 97, 3195-3206.	1.6	30
40	Incorporation of peptides in phospholipid aggregates using ultrasound. Ultrasonics Sonochemistry, 2008, 15, 1026-1032.	3.8	24
41	Interactions of sulindac and its metabolites with phospholipid membranes: An explanation for the peroxidation protective effect of the bioactive metabolite. Free Radical Research, 2008, 42, 639-650.	1.5	15
42	Use of liposomes as membrane models to evaluate the contribution of drug–membrane interactions to antioxidant properties of etodolac. Redox Report, 2008, 13, 225-236.	1.4	28
43	Use of liposomes to evaluate the role of membrane interactions on antioxidant activity. Analytica Chimica Acta, 2007, 597, 163-170.	2.6	34
44	Interactions Between Oxicams and Membrane Bilayers: an Explanation for Their Different COX Selectivity. Medicinal Chemistry, 2006, 2, 447-456.	0.7	31
45	Effect of anti-inflammatory drugs on splenocyte membrane fluidity. Analytical Biochemistry, 2005, 339, 144-149.	1.1	32
46	Interaction of Clonixin with EPC Liposomes Used as Membrane Models. Journal of Pharmaceutical Sciences, 2005, 94, 1277-1287.	1.6	30
47	Effects of diclofenac on EPC liposome membrane properties. Analytical and Bioanalytical Chemistry, 2005, 382, 1256-1264.	1.9	39
48	Influence of some anti-inflammatory drugs in membrane fluidity studied by fluorescence anisotropy measurements. Physical Chemistry Chemical Physics, 2004, 6, 1493-1498.	1.3	46
49	Partition and location of nimesulide in EPC liposomes: a spectrophotometric and fluorescence study. Analytical and Bioanalytical Chemistry, 2003, 377, 293-298.	1.9	52
50	Liposomal formulations for lung cancer treatment in the last two decades: a systematic review. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	2