
Raymond P Najjar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs. New England Journal of Medicine, 2020, 382, 1687-1695.	13.9	214
2	Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. Journal of Pineal Research, 2019, 66, e12562.	3.4	131
3	An inexpensive Arduino-based LED stimulator system for vision research. Journal of Neuroscience Methods, 2012, 211, 227-236.	1.3	102
4	Aging of Non-Visual Spectral Sensitivity to Light in Humans: Compensatory Mechanisms?. PLoS ONE, 2014, 9, e85837.	1.1	101
5	Optical coherence tomography angiography in acute non-arteritic anterior ischaemic optic neuropathy. British Journal of Ophthalmology, 2017, 101, 1045-1051.	2.1	89
6	Temporal integration of light flashes by the human circadian system. Journal of Clinical Investigation, 2016, 126, 938-947.	3.9	83
7	Light-Induced Pupillary Responses in Alzheimer's Disease. Frontiers in Neurology, 2019, 10, 360.	1.1	64
8	Chronic Artificial Blue-Enriched White Light Is an Effective Countermeasure to Delayed Circadian Phase and Neurobehavioral Decrements. PLoS ONE, 2014, 9, e102827.	1.1	53
9	Pupillary Responses to Full-Field Chromatic Stimuli Are Reduced in Patients with Early-Stage Primary Open-Angle Glaucoma. Ophthalmology, 2018, 125, 1362-1371.	2.5	49
10	Optic Disc Classification by Deep Learning versus Expert Neuroâ€Ophthalmologists. Annals of Neurology, 2020, 88, 785-795.	2.8	48
11	Future clinical applicability of optical coherence tomography angiography. Australasian journal of optometry, The, 2019, 102, 260-269.	0.6	33
12	Accuracy of a Deep Learning System for Classification of Papilledema Severity on Ocular Fundus Photographs. Neurology, 2021, 97, e369-e377.	1.5	33
13	Cerebral neural correlates of differential melanopic photic stimulation in humans. NeuroImage, 2017, 146, 763-769.	2.1	29
14	The Effects of Different Outdoor Environments, Sunglasses and Hats on Light Levels: Implications for Myopia Prevention. Translational Vision Science and Technology, 2019, 8, 7.	1.1	28
15	Light and myopia: from epidemiological studies to neurobiological mechanisms. Therapeutic Advances in Ophthalmology, 2021, 13, 251584142110592.	0.8	27
16	Rods contribute to the light-induced phase shift of the retinal clock in mammals. PLoS Biology, 2019, 17, e2006211.	2.6	25
17	Heterochromatic Flicker Photometry for Objective Lens Density Quantification. , 2016, 57, 1063.		24
18	Disrupted Eye Movements in Preperimetric Primary Open-Angle Glaucoma. , 2017, 58, 2430.		24

Disrupted Eye Movements in Preperimetric Primary Open-Angle Glaucoma. , 2017, 58, 2430. 18

RAYMOND P NAJJAR

#	Article	IF	CITATIONS
19	Refined flicker photometry technique to measure ocular lens density. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 2469.	0.8	20
20	Mussel-Inspired Durable Antimicrobial Contact Lenses: The Role of Covalent and Noncovalent Attachment of Antimicrobials. ACS Biomaterials Science and Engineering, 2020, 6, 3162-3173.	2.6	20
21	Embedded deep learning in ophthalmology: making ophthalmic imaging smarter. Therapeutic Advances in Ophthalmology, 2019, 11, 251584141982717.	0.8	18
22	A reappraisal of diagnostic tests for myasthenia gravis in a large Asian cohort. Journal of the Neurological Sciences, 2017, 376, 153-158.	0.3	15
23	Artificial intelligence for detection of optic disc abnormalities. Current Opinion in Neurology, 2020, 33, 106-110.	1.8	15
24	Ocular growth and metabolomics are dependent upon the spectral content of ambient white light. Scientific Reports, 2021, 11, 7586.	1.6	15
25	Handheld chromatic pupillometry can accurately and rapidly reveal functional loss in glaucoma. British Journal of Ophthalmology, 2023, 107, 663-670.	2.1	13
26	Artificial Intelligence Meets Neuro-Ophthalmology. Asia-Pacific Journal of Ophthalmology, 2022, 11, 111-125.	1.3	13
27	Association of time outdoors and patterns of light exposure with myopia in children. British Journal of Ophthalmology, 2023, 107, 133-139.	2.1	11
28	Standing Balance and Spatiotemporal Aspects of Gait Are Impaired Upon Nocturnal Awakening in Healthy Late Middle-Aged and Older Adults. Journal of Clinical Sleep Medicine, 2016, 12, 1477-1486.	1.4	9
29	A Purkinje image-based system for an assessment of the density and transmittance spectra of the human crystalline lens in vivo. Scientific Reports, 2020, 10, 16445.	1.6	9
30	Deep Learning for Retinal Image Quality Assessment of Optic Nerve Head Disorders. Asia-Pacific Journal of Ophthalmology, 2021, 10, 282-288.	1.3	9
31	Effects of low and moderate refractive errors on chromatic pupillometry. Scientific Reports, 2019, 9, 4945.	1.6	8
32	Recovery From Form-Deprivation Myopia in Chicks Is Dependent Upon the Fullness and Correlated Color Temperature of the Light Spectrum. , 2022, 63, 16.		8
33	Retinal neural dysfunction in diabetes revealed with handheld chromatic pupillometry. Clinical and Experimental Ophthalmology, 0, , .	1.3	7
34	Anatomy and Physiology of the Circadian System. , 2017, , 29-53.		6
35	Impact of blue-depleted white light on pupil dynamics, melatonin suppression and subjective alertness following real-world light exposure. Sleep Science and Practice, 2018, 2, .	0.6	6
36	Retinal Neuronal Loss in Visually Asymptomatic Patients With Myoclonic Epilepsy With Ragged-Red Fibers. Journal of Neuro-Ophthalmology, 2019, 39, 18-22.	0.4	5

Raymond P Najjar

#	Article	IF	CITATIONS
37	Chromatic pupillometry in multiple evanescent white dot syndrome masquerading as atypical optic neuritis. Acta Ophthalmologica, 2022, 100, 713-715.	0.6	5
38	Pupillary responses to light are not affected by narrow irido-corneal angles. Scientific Reports, 2017, 7, 10190.	1.6	4
39	Steady-State Pattern Electroretinography in Eyes with Glaucoma and High Myopia. Clinical Ophthalmology, 2021, Volume 15, 4455-4465.	0.9	4
40	Can photoreceptor loss also account for changes in pupil size following panretinal photocoagulation?. Eye, 2017, 31, 161-161.	1.1	2
41	Opinion: Tailoring the lighting environment for a healthier ocular growth. Lighting Research and Technology, 2022, 54, 100-100.	1.2	2
42	Artificial Intelligence in Neuro-Ophthalmology. Current Practices in Ophthalmology, 2021, , 101-111.	0.1	1
43	Reply to Kawada: Diagnostic tests for myasthenia gravis with ocular involvement. Journal of the Neurological Sciences, 2017, 379, 338.	0.3	0
44	Corneal elevation changes after forced eyelid closure in healthy participants and in patients with keratoconus. Australasian journal of optometry, The, 2019, 102, 590-595.	0.6	0
45	Identifying the content for an item bank and computerized adaptive testing system to measure the impact of age-related macular degeneration on health-related quality of life. Quality of Life Research, 2021, , 1.	1.5	0
46	Temporal Integration of Light in a Human Non-visual Circuit. Journal of Vision, 2016, 16, 46.	0.1	0
47	Age-related changes in circadian rhythms and non-visual responses to light during adulthood. , 2021, ,		0
48	In-Vivo Imaging of Ocular Microvasculature Using Swept-Source Optical Coherence Tomography Angiography in Seven Types of Lab Animals. Frontiers in Photonics, 2022, 3, .	1.1	0