Ivan N Yakovkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200701/publications.pdf Version: 2024-02-01

IVAN N VAROVRIN

#	Article	IF	CITATIONS
1	Band structure of free Sb layers and spin-orbit splitting of surface bands. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 430, 127987.	2.1	3
2	DFT study of Sb layers on the Mo(112) surface. Physica B: Condensed Matter, 2022, 636, 413894.	2.7	3
3	ADSORPTION-INDUCED INCREASING SPECULARITY OF CONDUCTION ELECTRONS' SURFACE SCATTERING. Surface Review and Letters, 2021, 28, 2130001.	1.1	1
4	Band inversion and absence of surface states in IV – VI semiconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 403, 127398.	2.1	8
5	Band ordering and surface states of SnTe and PbTe. Physica B: Condensed Matter, 2021, 616, 413120.	2.7	1
6	Quantum confinement in free Cu(111), Ag(111), and Au(111) layers and apparent splitting of surface bands. Surface Science, 2020, 691, 121501.	1.9	0
7	Fermi surface of the H/Mo(110) adsorption system and related peculiarities in magnetoresistance. Surface Science, 2020, 695, 121572.	1.9	1
8	Dependence of the band structure of Bi(111) bilayers on lattice constant and spin-orbit splitting induced by a H monolayer. Journal of Physics and Chemistry of Solids, 2019, 129, 277-283.	4.0	8
9	Scattering of conduction electrons on the W(001) surface covered with the ordered deuterium monolayer. Surface Science, 2019, 685, 13-18.	1.9	1
10	Splitting of Shockley surface states in thin films of noble metals. Computational Materials Science, 2019, 156, 84-88.	3.0	1
11	DFT study of Sb and Pb layers on the Bi(1 1 1) surface. Applied Surface Science, 2018, 445, 154-160.	6.1	8
12	Honeycomb BeO monolayer on the Mo(112) surface: LEED and DFT study. Applied Surface Science, 2018, 428, 815-818.	6.1	17
13	Absence of the Rashba Splitting of Au(111) Surface Bands. Advances in Condensed Matter Physics, 2018, 2018, 1-5.	1.1	0
14	Spin-orbit band gaps and destruction of Dirac cones. Surface Science, 2017, 662, 1-5.	1.9	13
15	DFT and Monte Carlo study of the W(001) surface reconstruction. European Physical Journal B, 2017, 90, 1.	1.5	2
16	Dirac Cones in Graphene, Interlayer Interaction in Layered Materials, and the Band Gap in MoS2. Crystals, 2016, 6, 143.	2.2	38
17	Influence of the thickness and surface composition on the electronic structure of FeS 2 layers. Applied Surface Science, 2016, 377, 184-190.	6.1	10
18	Band structure of the MoS ₂ bilayer with adsorbed and intercalated Na. Physica Status Solidi (B): Basic Research, 2015, 252, 2693-2697.	1.5	6

Ινάν Ν Υάκονκιν

#	Article	IF	CITATIONS
19	Metallization and stiffness of the Li-intercalated MoS2 bilayer. Applied Surface Science, 2015, 353, 333-337.	6.1	12
20	INTERLAYER INTERACTION AND SCREENING IN MoS ₂ . Surface Review and Letters, 2014, 21, 1450039.	1.1	13
21	Hydrogen-induced metallicity and strengthening of MoS2. Chemical Physics, 2014, 434, 20-24.	1.9	19
22	DFT calculations of the electronic structure of SnOx layers on Pd(110). European Physical Journal B, 2013, 86, 1.	1.5	5
23	Indirect interaction in Ag and Pd adsorbed layers on the Mo(112) surface. Applied Surface Science, 2013, 265, 615-620.	6.1	8
24	Electronic structure of SnO and SnO2 layers on Rh(111). Surface Science, 2013, 613, 48-53.	1.9	2
25	<scp>DFT</scp> calculations of phonons in Ga <scp>A</scp> s with zinc blende and wurtzite structures. Physica Status Solidi (B): Basic Research, 2013, 250, 2141-2144.	1.5	3
26	Fermi surface of Mo(112) and indirect interaction between adsorbed atoms. Physical Review B, 2012, 86, .	3.2	13
27	Enhanced electron-phonon coupling at the Au/Mo(112) surface. Physical Review B, 2012, 86, .	3.2	6
28	New view of the occupied band structure of Mo(112). Physical Review B, 2012, 85, .	3.2	9
29	Lateral interactions and zigzag chains of Ho on the Mo(110) surface. Surface Science, 2012, 606, 21-27.	1.9	4
30	Model of the CO oxidation reaction on Au-covered Mo(112). European Physical Journal B, 2012, 85, 1.	1.5	3
31	Lateral interaction in Be and Mg layers on the Mo(112) surface. European Physical Journal B, 2012, 85, 1.	1.5	8
32	Band structure of Au layers on the Ru(0001) and graphene/Ru(0001) surfaces. European Physical Journal B, 2012, 85, 1.	1.5	12
33	Lateral interaction and structures in Cl adlayers on the Ag(111) surface. Chemical Physics, 2011, 383, 35-40.	1.9	6
34	Coverage-dependent changes in the electron–phonon coupling in Au/Mo(112). Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 318-322.	1.7	6
35	A DFT and Monte Carlo study of lateral interactions in Be layers on W(112). Surface Science, 2011, 605, 306-313.	1.9	8
36	A density functional theory study of the electron–phonon coupling at the Mo(112) surface. Journal of Physics Condensed Matter, 2011, 23, 225503.	1.8	7

Ιναν Ν Υακονκιν

#	Article	IF	CITATIONS
37	Adsorption of Nd on the Mo(110) surface. Applied Surface Science, 2010, 256, 4834-4838.	6.1	5
38	Valence of "divalent―rare earth metals. Applied Surface Science, 2010, 256, 4845-4849.	6.1	5
39	4f hybridization and band dispersion in gadolinium thin films and compounds. Physica Status Solidi (B): Basic Research, 2009, 246, 975-980.	1.5	5
40	Hydrogen-induced mitigation of O on Ru(101̄0): a density-functional study. Physical Chemistry Chemical Physics, 2009, 11, 5695.	2.8	2
41	Absence of CO dissociation on Mo(112). Journal of Chemical Physics, 2009, 130, 174714.	3.0	10
42	Efficient channel of the associative oxygen desorption from Pt(111). Applied Surface Science, 2008, 254, 4258-4262.	6.1	3
43	The gold and oxygen (3×1) structures on W(112). Applied Surface Science, 2008, 254, 4326-4331.	6.1	7
44	Zigzag chain structures of Gd on the Mo(110) surface. Surface Science, 2008, 602, 2610-2616.	1.9	16
45	Hydrogen associative desorption from Ru(1010). European Physical Journal B, 2008, 63, 17-24.	1.5	14
46	Density of states and the problem of Sm valence. Surface Science, 2007, 601, 1001-1007.	1.9	15
47	Driving force for the WO3(001) surface relaxation. Surface Science, 2007, 601, 1481-1488.	1.9	40
48	Mechanism of associative oxygen desorption from Pt(111) surface. European Physical Journal B, 2007, 58, 257-262.	1.5	12
49	Metallicity of atomic wires. Applied Surface Science, 2006, 252, 6127-6134.	6.1	15
50	Microscopic model of CO oxidation on Pt(111). Surface Science, 2006, 600, 2600-2607.	1.9	13
51	STM study of the Mo(112) and Mo(111) surfaces. Surface Science, 2006, 600, 240-244.	1.9	14
52	DFT study of oxygen adsorption on W(112) surface. Surface Science, 2005, 577, 229-235.	1.9	17
53	Relaxation of the Mo(112) and W(112) surfaces. European Physical Journal B, 2005, 44, 551-555.	1.5	15
54	Monte Carlo simulation of CO and O coadsorption and reaction on Pt(111). Surface Science, 2005, 578, 162-173.	1.9	45

Ινάν Ν Υάκονκιν

#	Article	IF	CITATIONS
55	Crystalline Ice Grown on the Surface of the Ferroelectric Polymer Poly(vinylidene fluoride) (70%) and Trifluoroethylene (30%). Journal of the American Chemical Society, 2005, 127, 17261-17265.	13.7	18
56	Monte Carlo simulations of hydrogen adsorption on the W(110) and Mo(110) surfaces. European Physical Journal B, 2004, 38, 525-531.	1.5	10
57	Formation of linear structures of Sr and Gd films on the Mo(112) and W(112) surfaces. Surface Science, 2004, 559, 29-39.	1.9	14
58	The development of the gadolinium surface state. Vacuum, 2004, 74, 191-194.	3.5	3
59	Monte-Carlo simulation of kinetics of H2 molecular adsorption. Surface Science, 2002, 497, 349-355.	1.9	18
60	Variations of the wave vector dependent band gaps with structural transformations of Gd thin films. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 304, 43-48.	2.1	6
61	Evidence of possible band symmetry effects in STM studies of Gd overlayers. Surface Science, 2002, 520, 43-52.	1.9	13
62	Lateral interaction and CO adlayer structures on the Pt() surface. Surface Science, 2002, 519, 90-100.	1.9	35
63	Nonmetal-to-metal transition in Mg films on the Mo(112) surface. Surface Science, 2001, 488, 7-14.	1.9	6
64	The surface sensitivity of the unoccupied bands of Mo(). Surface Science, 2001, 494, L773-L780.	1.9	20
65	Oxidation of CO on Li-precovered Pt. Surface Science, 1999, 442, 81-89.	1.9	30
66	Non-metal-to-metal transition in alkaline earth monolayers. Surface Science, 1999, 442, 431-441.	1.9	12
67	Alkaline-earth overlayers on furrowed transition metal surfaces: An example of tailoring the surface properties. Progress in Surface Science, 1998, 59, 355-365.	8.3	27
68	Metallization of the monolayer Mg film with a linear atomic structure. Surface Science, 1998, 406, 57-62.	1.9	12
69	Self-consistent electronic structure of the Mo(112) surface. Surface Science, 1997, 389, 48-54.	1.9	23
70	Adsorption and reaction of magnesium on. Surface Science, 1996, 365, 394-402.	1.9	16
71	Adsorption on a polar oxide surface: O2, C2H4and Na on Cr2O3(0001)/Cr(110). Faraday Discussions, 1996, 105, 295-315.	3.2	78
72	Interrelation between atomic and electronic structures of alkaline-earth adlayers on Mo(112) and Re(100). Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 369-375.	1.7	30

#	Article	IF	CITATIONS
73	Monte Carlo simulation of order-disorder transitions in linear structures of alkali and alkaline earth adsorbates. Surface Science, 1993, 282, 195-201.	1.9	29