Syahrun Nur Abdulmadjid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/420070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of Membrane-Facilitated Liquid-Solid Conversion: Adding Laser-Induced Breakdown Spectroscopy (LIBS) Multi-Applicability for Metal Analysis. Journal of Physics: Conference Series, 2021, 1951, 012044.	0.4	0
2	A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends. Journal of Materials Research and Technology, 2021, 15, 2287-2316.	5.8	68
3	Cellulose acetate-polyurethane film adsorbent with analyte enrichment for in-situ detection and analysis of aqueous Pb using Laser-Induced Breakdown Spectroscopy (LIBS). Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100516.	2.9	8
4	High sensitivity hydrogen analysis in zircaloy-4 using helium-assisted excitation laser-induced breakdown spectroscopy. Scientific Reports, 2021, 11, 21999.	3.3	3
5	Underlying physical processes for time dependent variations of He triplet and singlet intensities in laser-induced He plasma. Journal of Applied Physics, 2020, 127, 243303.	2.5	2
6	Emission Spectrochemical Analysis of Soft Samples Including Raw Fish by Employing Laser-Induced Breakdown Spectroscopy with a Subtarget at Low-Pressure Helium Gas. ACS Omega, 2020, 5, 16811-16818.	3.5	3
7	Extracted Compounds from Neem Leaves as Antimicrobial Agent on the Physico-Chemical Properties of Seaweed-Based Biopolymer Films. Polymers, 2020, 12, 1119.	4.5	22
8	Characterization and Performance Evaluation of Cellulose Acetate–Polyurethane Film for Lead II Ion Removal. Polymers, 2020, 12, 1317.	4.5	29
9	Comparison of excitation mechanisms and the corresponding emission spectra in femto second and nano second laser-induced breakdown spectroscopy in reduced ambient air and their performances in surface analysis. Journal of Laser Applications, 2020, 32, 012014.	1.7	2
10	Filler-Modified Castor Oil-Based Polyurethane Foam for the Removal of Aqueous Heavy Metals Detected Using Laser-Induced Breakdown Spectroscopy (LIBS) Technique. Polymers, 2020, 12, 903.	4.5	23
11	Underlying Physical Process for the Unusual Spectral Quality of Double Pulse Laser Spectroscopy in He Gas. Analytical Chemistry, 2019, 91, 7864-7870.	6.5	7
12	H–D Analysis Employing Energy Transfer from Metastable Excited-State He in Double-Pulse LIBS with Low-Pressure He Gas. Analytical Chemistry, 2019, 91, 1571-1577.	6.5	26
13	Shock wave plasma generation in low pressure ambient gas from powder sample using subtarget supported micro mesh as a sample holder and its potential applications for sensitive analysis of powder samples. Microchemical Journal, 2018, 142, 108-116.	4.5	8
14	Elemental detection of arabica and robusta green bean coffee using laser-induced plasma spectroscopy. AIP Conference Proceedings, 2017, , .	0.4	4
15	Preferential triplet over singlet emission of Zn in laser-induced plasmas. Japanese Journal of Applied Physics, 2017, 56, 066101.	1.5	2
16	Low pressure micro-Joule picosecond laser-induced breakdown spectroscopy and its prospective applications to minimally destructive and high resolution analysis. Japanese Journal of Applied Physics, 2017, 56, 096201.	1.5	5
17	Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma. AIP Advances, 2016, 6, 085105.	1.3	4
18	The use of laser-induced shock wave plasma spectroscopy (LISPS) for examining physical characteristics of pharmaceutical products. AIP Conference Proceedings, 2016, , .	0.4	2

#	Article	IF	CITATIONS
19	A comparative study of emission efficiencies in low-pressure argon plasmas induced by picosecond and nanosecond Nd:YAG lasers. Japanese Journal of Applied Physics, 2016, 55, 116101.	1.5	3
20	Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study. Applied Optics, 2016, 55, 1731.	2.1	21
21	Reply to Comments on "Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma" by Zaytsev et al., Spectrochim. Acta Part B 118 (2016) 37-39. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 123, 184-185.	2.9	1
22	Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO2 ambient gas. Journal of Applied Physics, 2016, 119, .	2.5	16
23	Spectral and Dynamic Characteristics of Helium Plasma Emission and its Effect on a Laser-Ablated Target Emission in a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) Experiment. Applied Spectroscopy, 2015, 69, 115-123.	2.2	14
24	Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 114, 1-6.	2.9	14
25	Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma. Journal of Applied Physics, 2015, 117, .	2.5	5
26	Excitation mechanisms in 1 mJ picosecond laser induced low pressure He plasma and the resulting spectral quality enhancement. Journal of Applied Physics, 2015, 117, .	2.5	6
27	Practical and highly sensitive elemental analysis for aqueous samples containing metal impurities employing electrodeposition on indium-tin oxide film samples and laser-induced shock wave plasma in low-pressure helium gas. Applied Optics, 2015, 54, 7592.	2.1	10
28	A Comparative Study of Pressure-Dependent Emission Characteristics in Different Gas Plasmas Induced by Nanosecond and Picosecond Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) Lasers. Applied Spectroscopy, 2013, 67, 1285-1295.	2.2	2
29	Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma. Journal of Applied Physics, 2013, 113, 053301.	2.5	8
30	Quantitative Analysis of Deuterium in Zircaloy Using Double-Pulse Laser-Induced Breakdown Spectrometry (LIBS) and Helium Gas Plasma without a Sample Chamber. Analytical Chemistry, 2012, 84, 2224-2231.	6.5	33
31	Double pulse spectrochemical analysis using orthogonal geometry with very low ablation energy and He ambient gas. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 69, 56-60.	2.9	18
32	Observation of exclusively He-induced H emission in cooled laser plasma. Journal of Applied Physics, 2011, 109, 103305.	2.5	11
33	Deuterium analysis in zircaloy using ps laser-induced low pressure plasma. Journal of Applied Physics, 2011, 110, 063301.	2.5	11
34	Induced Current Characteristics Due to Laser Induced Plasma and Its Application to Laser Processing Monitoring. , 2011, , .		0
35	Quantitative Deuterium Analysis of Titanium Samples in Ultraviolet Laser-Induced Low-Pressure Helium Plasma. Applied Spectroscopy, 2010, 64, 365-369.	2.2	10
36	Intensity distributions of enhanced H emission from laser-induced low-pressure He plasma and a suggested He-assisted excitation mechanism. Journal of Applied Physics, 2009, 106, 043303.	2.5	12

#	Article	IF	CITATIONS
37	The role of He in enhancing the intensity and lifetime of H and D emissions from laser-induced atmospheric-pressure plasma. Journal of Applied Physics, 2009, 105, .	2.5	27
38	Quenching of He-induced intensity enhancement effect in H and D emission produced by Nd-doped yttrium aluminum garnet laser irradiation on solid targets in low pressure helium gas. Journal of Applied Physics, 2009, 105, .	2.5	9
39	Monitoring of laser processing using induced current under applied electric field on laser produced-plasma. Journal of Materials Processing Technology, 2009, 209, 3009-3021.	6.3	14
40	Quantitative hydrogen analysis of zircaloy-4 in laser-induced breakdown spectroscopy with ambient helium gas. Applied Optics, 2007, 46, 8298.	2.1	22
41	Quantitative Hydrogen Analysis of Zircaloy-4 Using Low-Pressure Laser Plasma Technique. Analytical Chemistry, 2007, 79, 2703-2707.	6.5	38
42	Some notes on the role of meta-stable excited state of helium atom in laser-induced helium gas breakdown spectroscopy. Applied Physics B: Lasers and Optics, 2007, 86, 729-734.	2.2	25
43	Comparative study of laser-induced plasma emission of hydrogen from zircaloy-2 samples in atmospheric and low pressure ambient helium gas. Applied Physics B: Lasers and Optics, 2007, 89, 291-298.	2.2	13
44	Elemental analysis of bead samples using a laser-induced plasma at low pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 104-112.	2.9	11
45	Film analysis employing subtarget effect using 355Ânm Nd-YAG laser-induced plasma at low pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 1285-1293.	2.9	9
46	An improved approach for hydrogen analysis in metal samples using single laser-induced gas plasma and target plasma at helium atmospheric pressure. Applied Physics B: Lasers and Optics, 2006, 82, 161-166.	2.2	33
47	Effects of mass difference on pressure-dependent emission characteristics in laser-induced plasma spectroscopy. Applied Physics B: Lasers and Optics, 2006, 85, 631-636.	2.2	1
48	Production of artificial snow crystals using charged thin hairs in a thermos containing a mixture of salt and ice. Current Applied Physics, 2005, 5, 397-400.	2.4	0
49	Plasma emission induced by an Nd-YAG laser at low pressure on solid organic sample, its mechanism, and analytical application. Journal of Applied Physics, 2005, 97, 053305.	2.5	12
50	Detection of deuterium and hydrogen using laser-induced helium gas plasma at atmospheric pressure. Journal of Applied Physics, 2005, 98, 093302.	2.5	25
51	Characteristics of Induced Current Due to Laser Plasma and Its Application to Laser Processing Monitoring. Japanese Journal of Applied Physics, 2004, 43, 1018-1027.	1.5	14
52	TEA-CO2 Laser-Induced Shock Wave Plasma Modulated by Wires and Needles Placed in Front of the Target at Low Pressure. Applied Spectroscopy, 2003, 57, 874-877.	2.2	5