
Xiaohui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200521/publications.pdf Version: 2024-02-01

Хионии Млыс

#	Article	IF	CITATIONS
1	Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 2004, 95, 147-155.	2.1	699
2	Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydrate Polymers, 2004, 56, 21-26.	5.1	359
3	High-Efficiency, Environment-Friendly Electroluminescent Polymers with Stable High Work Function Metal as a Cathode:Â Green- and Yellow-Emitting Conjugated Polyfluorene Polyelectrolytes and Their Neutral Precursors. Journal of the American Chemical Society, 2004, 126, 9845-9853.	6.6	309
4	Chitosan- metal complexes as antimicrobial agent: Synthesis, characterization and Structure-activity study. Polymer Bulletin, 2005, 55, 105-113.	1.7	293
5	14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy, 2020, 72, 104718.	8.2	280
6	Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnology Advances, 2014, 32, 1301-1316.	6.0	260
7	Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 17478-17488.	4.0	223
8	Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer, 2006, 47, 6738-6744.	1.8	178
9	Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chemical Engineering Journal, 2021, 408, 127306.	6.6	174
10	Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels. Carbohydrate Polymers, 2019, 224, 115147.	5.1	163
11	All-Lignin-Based Hydrogel with Fast pH-Stimuli Responsiveness for Mechanical Switching and Actuation. Chemistry of Materials, 2020, 32, 4324-4330.	3.2	136
12	Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydrate Polymers, 2007, 67, 66-72.	5.1	127
13	A Truxenoneâ€based Covalent Organic Framework as an Allâ€5olidâ€5tate Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie - International Edition, 2020, 59, 20385-20389.	7.2	110
14	Preparation and characterization of alginate/gelatin blend fibers. Journal of Applied Polymer Science, 2005, 96, 1625-1629.	1.3	108
15	Preparation and Third-Order Optical Nonlinearity of Self-Assembled Chitosan/CdSeâ^'ZnS Coreâ^'Shell Quantum Dots Multilayer Films. Journal of Physical Chemistry B, 2006, 110, 1566-1570.	1.2	102
16	Characterization and antioxidant activity of β-carotene loaded chitosan-graft-poly(lactide) nanomicelles. Carbohydrate Polymers, 2015, 117, 169-176.	5.1	96
17	Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH ₄ OH passivation. Journal of Materials Chemistry C, 2014, 2, 9760-9766.	2.7	92
18	Self-Assembly and Paclitaxel Loading Capacity of Cellulose- <i>graft</i> -poly(lactide) Nanomicelles. Journal of Agricultural and Food Chemistry, 2012, 60, 3900-3908.	2.4	88

#	Article	IF	CITATIONS
19	Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chemical Communications, 2012, 48, 5569.	2.2	88
20	Preparation of cellulose-graft-poly(É›-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydrate Polymers, 2013, 92, 77-83.	5.1	88
21	A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale, 2019, 11, 725-732.	2.8	80
22	Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes. Chemical Engineering Journal, 2021, 412, 128755.	6.6	80
23	Effect of chitosan coating on respiratory behavior and quality of stored litchi under ambient temperature. Journal of Food Engineering, 2011, 102, 94-99.	2.7	76
24	Graphene Oxide Encapsulating Liquid Metal to Toughen Hydrogel. Advanced Functional Materials, 2021, 31, 2106761.	7.8	72
25	Synthesis and properties of a novel water-soluble anionic polyfluorenes for highly sensitive biosensors. Polymer, 2005, 46, 12010-12015.	1.8	70
26	Preparation and characterization of new quaternized carboxymethyl chitosan/rectorite nanocomposite. Composites Science and Technology, 2010, 70, 1161-1167.	3.8	70
27	Waterâ€Soluble Conjugated Molecule for Solarâ€Driven Hydrogen Evolution from Salt Water. Advanced Functional Materials, 2019, 29, 1808156.	7.8	66
28	Self-Assembled Conjugated Polymer/Chitosan- <i>graft</i> -Oleic Acid Micelles for Fast Visible Detection of Aliphatic Biogenic Amines by "Turn-On―FRET. ACS Applied Materials & Interfaces, 2017, 9, 22875-22884.	4.0	63
29	Applications of Hydrogels with Special Physical Properties in Biomedicine. Polymers, 2019, 11, 1420.	2.0	63
30	Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Industrial Crops and Products, 2015, 70, 56-63.	2.5	60
31	Self-assembly and β-carotene loading capacity of hydroxyethyl cellulose-graft-linoleic acid nanomicelles. Carbohydrate Polymers, 2016, 145, 56-63.	5.1	60
32	Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties. Carbohydrate Polymers, 2020, 240, 116289.	5.1	59
33	Robust, high-barrier, and fully recyclable cellulose-based plastic replacement enabled by a dynamic imine polymer. Journal of Materials Chemistry A, 2020, 8, 14082-14090.	5.2	57
34	Conversion of crystal structure of the chitin to facilitate preparation of a 6-carboxychitin with moisture absorption–retention abilities. Carbohydrate Polymers, 2006, 66, 168-175.	5.1	54
35	All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2- <i>c</i>][1,2,5]thiadiazole (fDTBT)-based polymer don Materials Chemistry A, 2021, 9, 8975-8983.	or. 5ø urna	l of54
36	Unravelling the efficient use of waste lignin as a bitumen modifier for sustainable roads. Construction and Building Materials, 2020, 230, 116957.	3.2	52

#	Article	IF	CITATIONS
37	A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors. Energy Storage Materials, 2020, 32, 208-215.	9.5	52
38	Designed biomass materials for "green―electronics: A review of materials, fabrications, devices, and perspectives. Progress in Materials Science, 2022, 125, 100917.	16.0	52
39	New Understandings of the Relationship and Initial Formation Mechanism for Pseudo-lignin, Humins, and Acid-Induced Hydrothermal Carbon. Journal of Agricultural and Food Chemistry, 2018, 66, 11981-11989.	2.4	51
40	High performance fully paperâ€based allâ€solidâ€state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxideâ€modified pulp fibers. EcoMat, 2021, 3, e12076.	6.8	51
41	Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles. Polymer Bulletin, 2012, 69, 389-403.	1.7	48
42	All-Biomass Fluorescent Hydrogels Based on Biomass Carbon Dots and Alginate/Nanocellulose for Biosensing. ACS Applied Bio Materials, 2018, 1, 1398-1407.	2.3	48
43	Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose, 2013, 20, 873-884.	2.4	47
44	Transparent, flexible and recyclable nanopaper-based touch sensors fabricated <i>via</i> inkjet-printing. Green Chemistry, 2020, 22, 3208-3215.	4.6	47
45	High Oxygen Barrier Property of Poly(propylene carbonate)/Polyethylene Glycol Nanocomposites with Low Loading of Cellulose Nanocrytals. ACS Sustainable Chemistry and Engineering, 2017, 5, 11246-11254.	3.2	45
46	Suppressing the excessive aggregation of nonfullerene acceptor in bladeâ€coated active layer by using nâ€type polymer additive to achieve largeâ€area printed organic solar cells with efficiency over 15%. EcoMat, 2019, 1, e12006.	6.8	45
47	High strength, flexible, and conductive graphene/polypropylene fiber paper fabricated via papermaking process. Advanced Composites and Hybrid Materials, 2022, 5, 104-112.	9.9	45
48	Synthesis of porous poly(styrene-co-acrylic acid) microspheres through one-step soap-free emulsion polymerization: Whys and wherefores. Journal of Colloid and Interface Science, 2012, 368, 220-225.	5.0	44
49	Microwave-Assisted Oxalic Acid Pretreatment for the Enhancing of Enzyme Hydrolysis in the Production of Xylose and Arabinose from Bagasse. Molecules, 2018, 23, 862.	1.7	44
50	SO42â^'/Sn-MMT Solid Acid Catalyst for Xylose and Xylan Conversion into Furfural in the Biphasic System. Catalysts, 2017, 7, 118.	1.6	43
51	A novel crosslinkable electron injection/transporting material for solution processed polymer light-emitting diodes. Science China Chemistry, 2011, 54, 1745-1749.	4.2	40
52	Electrostatically self-assembled chitosan derivatives working as efficient cathode interlayers for organic solar cells. Nano Energy, 2017, 34, 164-171.	8.2	40
53	A sandwich-like chitosan-based antibacterial nanocomposite film with reduced graphene oxide immobilized silver nanoparticles. Carbohydrate Polymers, 2021, 260, 117835.	5.1	39
54	Fluorescent Nanomicelles for Selective Detection of Sudan Dye in Pluronic F127 Aqueous Media. ACS Applied Materials & Interfaces, 2014, 6, 5113-5121.	4.0	38

#	Article	IF	CITATIONS
55	Large scale preparation of graphene oxide/cellulose paper with improved mechanical performance and gas barrier properties by conventional papermaking method. Industrial Crops and Products, 2016, 85, 198-203.	2.5	38
56	Biomass Nanomicelles Assist Conjugated Polymers/Pt Cocatalysts To Achieve High Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 4128-4135.	3.2	38
57	A new approach to recycle oxalic acid during lignocellulose pretreatment for xylose production. Biotechnology for Biofuels, 2018, 11, 324.	6.2	37
58	Multiâ€Responsive Bilayer Hydrogel Actuators with Programmable and Precisely Tunable Motions. Macromolecular Chemistry and Physics, 2019, 220, 1800562.	1.1	37
59	Solid acid-induced hydrothermal treatment of bagasse for production of furfural and levulinic acid by a two-step process. Industrial Crops and Products, 2018, 123, 118-127.	2.5	36
60	Green conversion of Ganoderma lucidum residues to electrode materials for supercapacitors. Advanced Composites and Hybrid Materials, 2021, 4, 1270-1280.	9.9	34
61	Progress on chemical modification of cellulose in "green―solvents. Polymer Chemistry, 2022, 13, 359-372.	1.9	34
62	Highly smooth, stable and reflective Ag-paper electrode enabled by silver mirror reaction for organic optoelectronics. Chemical Engineering Journal, 2019, 370, 1048-1056.	6.6	33
63	Simultaneously obtaining fluorescent carbon dots and porous active carbon for supercapacitors from biomass. RSC Advances, 2016, 6, 88674-88682.	1.7	32
64	Quercetin/chitosan-graft-alpha lipoic acid micelles: A versatile antioxidant water dispersion with high stability. Carbohydrate Polymers, 2020, 234, 115927.	5.1	32
65	Scalable manufacturing of leafâ€like <scp>MXene</scp> /Ag <scp>NWs</scp> /cellulose composite paper electrode for allâ€solidâ€state supercapacitor. EcoMat, 2022, 4, .	6.8	32
66	A one-pot strategy for preparation of high-strength carboxymethyl xylan-g-poly(acrylic acid) hydrogels with shape memory property. Journal of Colloid and Interface Science, 2019, 538, 507-518.	5.0	30
67	Fabricating lignin-based carbon nanofibers as versatile supercapacitors from food wastes. International Journal of Biological Macromolecules, 2022, 194, 632-643.	3.6	29
68	Starch-Based Rehealable and Degradable Bioplastic Enabled by Dynamic Imine Chemistry. ACS Sustainable Chemistry and Engineering, 2022, 10, 8650-8657.	3.2	29
69	Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. Journal of Materials Chemistry B, 2016, 4, 6454-6461.	2.9	28
70	Interaction between chitosan and alkyl β-d-glucopyranoside and its effect on their antimicrobial activity. Carbohydrate Polymers, 2004, 56, 243-250.	5.1	27
71	Platinumâ€Based Poly(Aryleneethynylene) Polymers Containing Thiazolothiazole Group with High Hole Mobilities for Fieldâ€Effect Transistor Applications. Macromolecular Rapid Communications, 2012, 33, 603-609.	2.0	27
72	Large two-photon absorbance of chitosan–ZnS quantum dots nanocomposite film. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 30, 96-100.	1.3	26

#	Article	IF	CITATIONS
73	Quaternized xylan/cellulose nanocrystal reinforced magnetic hydrogels with high strength. Cellulose, 2018, 25, 4537-4549.	2.4	26
74	Fluorescent Lignin Carbon Dots for Reversible Responses to High-Valence Metal Ions and Its Bioapplications. Journal of Biomedical Nanotechnology, 2018, 14, 1543-1555.	0.5	26
75	Preparation of graphene by exfoliating graphite in aqueous fulvic acid solution and its application in corrosion protection of aluminum. Journal of Colloid and Interface Science, 2019, 543, 263-272.	5.0	25
76	Preparation of lanthanide doped CdS, ZnS quantum dots in natural polysaccharide template and their optical properties. Optical Materials, 2012, 34, 646-651.	1.7	24
77	Synthesis, characterization, and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/l̃µ-caprolactone/p-dioxanone). Cellulose, 2015, 22, 2365-2374.	2.4	24
78	Carbon Nanotubes Reinforced Maleic Anhydride-Modified Xylan-g-Poly(N-isopropylacrylamide) Hydrogel with Multifunctional Properties. Materials, 2018, 11, 354.	1.3	24
79	Mussel-inspired adhesive hydrogels based on biomass-derived xylan and tannic acid cross-linked with acrylic acid with antioxidant and antibacterial properties. Journal of Materials Science, 2021, 56, 14729-14740.	1.7	24
80	Clay nanosheet-mediated delivery of recombinant plasmids expressing artificial miRNAs via leaf spray to prevent infection by plant DNA viruses. Horticulture Research, 2020, 7, 179.	2.9	23
81	Modular Nanocomposite Films with Tunable Physical Organization of Cellulose Nanocrystals for Photonic Encryption. Advanced Optical Materials, 2020, 8, 2000547.	3.6	23
82	Interface Engineering on Celluloseâ€Based Flexible Electrode Enables High Mass Loading Wearable Supercapacitor with Ultrahigh Capacitance and Energy Density. Small, 2022, 18, e2106356.	5.2	23
83	Fluorescent Identification and Detection of Staphylococcus aureus with Carboxymethyl Chitosan/CdS Quantum Dots Bioconjugates. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1881-1893.	1.9	22
84	Amphoteric Polymer-Clay Nanocomposites with Drug-Controlled Release Property. Current Nanoscience, 2011, 7, 183-190.	0.7	22
85	An efficient pretreatment for the selectively hydrothermal conversion of corncob into furfural: The combined mixed ball milling and ultrasonic pretreatments. Industrial Crops and Products, 2016, 94, 721-728.	2.5	22
86	Self-assembly behavior and conformation of amphiphilic hemicellulose-graft-fatty acid micelles. Carbohydrate Polymers, 2021, 261, 117886.	5.1	22
87	Bandgap engineering of indenofluoreneâ€based conjugated copolymers with pendant donorâ€Ï€â€acceptor chromophores for photovoltaic applications. Journal of Polymer Science Part A, 2011, 49, 4406-4415.	2.5	21
88	Self-assembled conjugated polymer/carboxymethyl chitosan grafted poly(p-dioxanone) nanomicelles and their use in functionalized indicator paper for fast and visual detection of a banned food dye. Polymer Chemistry, 2014, 5, 4251-4258.	1.9	20
89	Mussel-inspired fabrication of novel superhydrophobic and superoleophilic sponge modified using a high density of nanoaggregates at low concentration of dopamine. RSC Advances, 2016, 6, 71905-71912.	1.7	20
90	Efficient catalytic conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural using recyclable ironic phosphates catalysts. Bioresource Technology, 2019, 290, 121764.	4.8	19

#	Article	IF	CITATIONS
91	F127/conjugated polymers fluorescent micelles for trace detection of nitroaromatic explosives. Dyes and Pigments, 2016, 125, 367-374.	2.0	18
92	Multi-color light-emitting amphiphilic cellulose/conjugated polymers nanomicelles for tumor cell imaging. Cellulose, 2017, 24, 889-902.	2.4	18
93	Corncob Biorefinery for Platform Chemicals and Lignin Coproduction: Metal Chlorides as Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 5309-5317.	3.2	18
94	Production of Xylooligosaccharide, Nanolignin, and Nanocellulose through a Fractionation Strategy of Corncob for Biomass Valorization. Industrial & Engineering Chemistry Research, 2020, 59, 17429-17439.	1.8	18
95	Toward scalable fabrication of electrochemical paper sensor without surface functionalization. Npj Flexible Electronics, 2022, 6, .	5.1	18
96	Porous Cellulose Aerogels with High Mechanical Performance and their Absorption Behaviors. BioResources, 2015, 11, 8-20.	0.5	17
97	Ag nanowires functionalized cellulose textiles for supercapacitor and photothermal conversion. Materials Letters, 2017, 189, 248-251.	1.3	17
98	Xylan-Based Hydrogels as a Potential Carrier for Drug Delivery: Effect of Pore-Forming Agents. Pharmaceutics, 2018, 10, 261.	2.0	17
99	Production and closed-loop recycling of biomass-based malleable materials. Science China Materials, 2020, 63, 2071-2078.	3.5	17
100	Full Solution-Processed Fabrication of Conductive Hybrid Paper Electrodes for Organic Optoelectronics. ACS Sustainable Chemistry and Engineering, 2020, 8, 3392-3400.	3.2	17
101	Microwave Irradiation – Assisted Synthesis and Flocculation Behavior of Quaternized Chitosan/Organo – Montmorillonite Nanocomposite. Current Nanoscience, 2011, 7, 1034-1041.	0.7	17
102	MnO2@Corncob Carbon Composite Electrode and All-Solid-State Supercapacitor with Improved Electrochemical Performance. Materials, 2019, 12, 2379.	1.3	16
103	One-Step Synthesis of Quadrilateral-Shaped Silver Nanoplates with Lamellar Structures Tuned by Amylopectin Derivatives. ACS Omega, 2018, 3, 6841-6848.	1.6	15
104	BrÃ,nsted acid-driven conversion of glucose to xylose, arabinose and formic acid via selective C–C cleavage. Applied Catalysis B: Environmental, 2021, 286, 119862.	10.8	15
105	Enhanced Activity and Durability of Nanosized Pt–SnO ₂ /IrO ₂ /CNTs Catalyst for Methanol Electrooxidation. Journal of Nanoscience and Nanotechnology, 2015, 15, 3662-3669.	0.9	14
106	Self-assembly and paclitaxel loading capacity of α-tocopherol succinate-conjugated hydroxyethyl cellulose nanomicelle. Colloid and Polymer Science, 2016, 294, 135-143.	1.0	14
107	Self-Healable Poly(vinyl alcohol) Photonic Crystal Hydrogel. ACS Applied Polymer Materials, 2020, 2, 2086-2092.	2.0	14
108	The effect of moist heat treatment on the characteristic of starch-based composite materials coating with chitosan. Carbohydrate Polymers, 2010, 81, 554-559.	5.1	13

#	Article	IF	CITATIONS
109	Preparation and the Electrochemical Performance of MnO ₂ /PANI@CNT Composite for Supercapacitors. Journal of Nanoscience and Nanotechnology, 2015, 15, 709-714.	0.9	13
110	Click chemistry to synthesize exfoliated xylan-g-quaternized chitosan/montmorillonite nanocomposites for retention and drainage-aid. Carbohydrate Polymers, 2019, 224, 115197.	5.1	12
111	Efficient Microwave-Assisted Hydrolysis of Microcrystalline Cellulose into Glucose Using New Carbon-Based Solid Catalysts. Catalysis Letters, 2020, 150, 138-149.	1.4	11
112	Structural Features of Lignin Fractionated From Industrial Furfural Residue Using Alkaline Cooking Technology and Its Antioxidant Performance. Frontiers in Energy Research, 2020, 8, .	1.2	10
113	Chitosanâ€Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization. Chemistry - an Asian Journal, 2016, 11, 893-899.	1.7	9
114	Enhancing the Mechanical Performance of Reduced Graphene Oxide Aerogel with Cellulose Nanofibers. ChemNanoMat, 2021, 7, 950-957.	1.5	9
115	Truxene-based covalent organic polyhedrons constructed through alkyne metathesis. Organic Chemistry Frontiers, 2021, 8, 4723-4729.	2.3	8
116	Thermo-processable chitosan-based plastic substitute with self-adaptiveness and closed-loop recyclability. Carbohydrate Polymers, 2022, 291, 119479.	5.1	8
117	3D Hollow Xerogels with Ordered Cellulose Nanocrystals for Tailored Mechanical Properties. Small, 2021, 17, e2104702.	5.2	7
118	Copper Ion Imprinted Hydrogel Photonic Crystal Sensor Film. ACS Applied Polymer Materials, 2022, 4, 4568-4575.	2.0	7
119	Novel Water-Soluble Chitosan Derivatives/Quantum Dots Nanocomposite: Synthesis, Characterization and Photoluminescence Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 6866-75.	0.9	6
120	Preparation of Long-Chain Fatty Acyl-Grafted Chitosan in an Ionic Liquid and Their Self-Assembled Micelles in Water. Journal of Macromolecular Science - Physics, 2012, 51, 2483-2492.	0.4	6
121	Synthesis and Characterization of Cellulose-graft-poly(p-dioxanone) Copolymers via Homogeneous Ring-Opening Graft Polymerization in Ionic Liquids. BioResources, 2015, 11, .	0.5	6
122	A green composite hydrogel based on xylan and lignin with adjustable mechanical properties, high swelling, excellent <scp>UV</scp> shielding, and antioxidation properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	6
123	Surfactant-free aqueous RAFT polymerization of styrene in the presence of CaCO3 particles. Polymer, 2013, 54, 614-622.	1.8	5
124	A Truxenoneâ€based Covalent Organic Framework as an Allâ€6olidâ€6tate Lithiumâ€lon Battery Cathode with High Capacity. Angewandte Chemie, 2020, 132, 20565-20569.	1.6	5
125	Morphology and thermal properties of nylon copolymers containing dimer acid, adipic acid, and hexamethylenediamine. Journal of Applied Polymer Science, 2011, 119, 2511-2516.	1.3	4
126	Inhibition of Amphiphilic N-Alkyl-O-carboxymethyl Chitosan Derivatives on Alternaria macrospora. BioMed Research International, 2018, 2018, 1-9.	0.9	4

#	Article	IF	CITATIONS
127	Thermal, Mechanical Properties and Rheological Behavior of Poly(Propylene Carbonate)/Poly(Ethylene) Tj ETQq1	1 0.78431 2.4	4 rgBT /Over
128	Preparation of fluorescent core/shell nanoparticles from amphiphilic cellulose-based copolymers for tumor cell imaging. Journal of Controlled Release, 2015, 213, e132.	4.8	3
129	Effect of intercalating agents on structure and properties of dimer acidâ€based polyamide modified by <i>in situ</i> doping of Naâ€montmorillonite. Polymers for Advanced Technologies, 2017, 28, 1030-1037.	1.6	3
130	Preparation and Characterization of TiO2 Nanowires Modified Organically with Coupling Agents. Journal of Nanoscience and Nanotechnology, 2021, 21, 4870-4876.	0.9	3
131	Study on structure and properties of dimer acid-based polyamide nylon modified by situ doping of Na-Montmorillonite. Russian Journal of Applied Chemistry, 2014, 87, 1184-1190.	0.1	2
132	Green Fabrication of Highly Conductive Paper Electrodes via Interface Engineering with Aminocellulose. Macromolecular Rapid Communications, 2021, 42, 2000499.	2.0	2
133	Fluorescent chiral liquid-crystalline networks with dual-mode temperature response. Liquid Crystals, 2021, 48, 1087-1094.	0.9	2
134	Wellâ€defined structures and nanoscale morphology for allâ€conjugated BCPs. Micro and Nano Letters, 2019, 14, 928-931.	0.6	1