Jinlong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200511/publications.pdf

Version: 2024-02-01

117625 82547 5,286 85 34 72 h-index citations g-index papers 87 87 87 4701 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimization of bioinspired surfaces with enhanced water transportation capacity. Chemical Engineering Journal, 2022, 433, 134568.	12.7	32
2	Preparation of Transparent Sandwich-like Superhydrophobic Coating on Glass with High Stability and Self-Cleaning Properties. Coatings, 2022, 12, 228.	2.6	3
3	Superhydrophobic straw felt for oil absorption. Results in Engineering, 2022, 13, 100370.	5.1	9
4	Self-propelling superhydrophobic miniboat with a superhydrophilic wedge-shaped pattern. Results in Engineering, 2022, 14, 100388.	5.1	3
5	Slippery concrete for sanitation. Progress in Organic Coatings, 2022, 171, 107022.	3.9	8
6	Colorful superhydrophobic concrete coating. Chemical Engineering Journal, 2021, 403, 126348.	12.7	77
7	Drop impact on elastic superhydrophobic films: From pancake bouncing to saucer bouncing. Materials Letters, 2021, 285, 129076.	2.6	9
8	Maintenance of superhydrophobic concrete for high compressive strength. Journal of Materials Science, 2021, 56, 4588-4598.	3.7	14
9	Large-area fabrication of superhydrophobic micro-conical pillar arrays on various metallic substrates. Nanoscale, 2021, 13, 14023-14034.	5.6	32
10	Atmospheric pressure cold plasma jet–assisted micro-milling TC4 titanium alloy. International Journal of Advanced Manufacturing Technology, 2021, 112, 2201-2209.	3.0	10
11	Self-propelled hydrogels that glide on water. Science Robotics, 2021, 6, .	17.6	2
12	Study on Dry-ice Particle Jet Assisted Decontamination Technology. Journal of Physics: Conference Series, 2021, 1948, 012123.	0.4	0
13	Electrochemical 3D printing of superhydrophobic pillars with conical, cylindrical, and inverted conical shapes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126869.	4.7	31
14	Facile preparation of durable superhydrophobic-superoleophilic mesh using simple chemical oxidation for oil-water separation under harsh conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126777.	4.7	22
15	Energy conversion based on superhydrophobic surfaces. Physical Chemistry Chemical Physics, 2020, 22, 25430-25444.	2.8	5
16	Through-mask electrochemical micromachining of micro pillar arrays on aluminum. Surface and Coatings Technology, 2020, 401, 126277.	4.8	19
17	3D FEM simulation of chip breakage in turning AISI1045 with complicate-grooved insert. International Journal of Advanced Manufacturing Technology, 2020, 108, 1331-1341.	3.0	8
18	Dropletâ€Based Selfâ€Propelled Miniboat. Advanced Functional Materials, 2020, 30, 1910778.	14.9	38

#	Article	IF	Citations
19	A facile and less-polluting electrochemical method to fabricate multifunctional superhydrophobic film on iron materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124495.	4.7	8
20	Superhydrophobic Nickel-Electroplated Carbon Fibers for Versatile Oil/Water Separation with Excellent Reusability and High Environmental Stability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24390-24402.	8.0	72
21	Capillary drainage of a sessile droplet through a hole. Physical Review Fluids, 2020, 5, .	2.5	3
22	Nanotextured Surfaces with Underwater Anisotropic Sliding Resistance for Oil Transfer and Coalescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123691.	4.7	7
23	Experimental study on correcting the contour error of a rotary surface machined by electrochemical mechanical machining. International Journal of Advanced Manufacturing Technology, 2019, 104, 2827-2838.	3.0	0
24	Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45345-45353.	8.0	56
25	Open surface multifunctional droplet manipulation platform fabricated by micromilling. Journal of Materials Science, 2019, 54, 10715-10727.	3.7	4
26	High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. Journal of Materials Chemistry A, 2019, 7, 13567-13576.	10.3	90
27	Comparative study of surface modification of polyethylene by parallel-field and cross-field atmospheric pressure plasma jets. Journal of Applied Physics, 2019, 125, .	2.5	8
28	Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. Journal of Colloid and Interface Science, 2019, 541, 86-92.	9.4	170
29	Influence of water addition on the modification of polyethylene surface by nitrogen atmospheric pressure plasma jet. Journal of Applied Polymer Science, 2019, 136, 47136.	2.6	10
30	A universal method to create surface patterns with extreme wettability on metal substrates. Journal of Colloid and Interface Science, 2019, 535, 100-110.	9.4	21
31	Robust platform for water harvesting and directional transport. Journal of Materials Chemistry A, 2018, 6, 5635-5643.	10.3	71
32	Underwater Curvature-Driven Transport between Oil Droplets on Patterned Substrates. ACS Applied Materials & Droplets & Account of the Materials & Droplets on Patterned Substrates. ACS Applied Materials & Droplets on Patterned Substrates & Droplets & Dropl	8.0	36
33	Maskless Hydrophilic Patterning of the Superhydrophobic Aluminum Surface by an Atmospheric Pressure Microplasma Jet for Water Adhesion Controlling. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7497-7503.	8.0	46
34	A superhydrophilic cement-coated mesh: an acid, alkali, and organic reagent-free material for oil/water separation. Nanoscale, 2018, 10, 1920-1929.	5.6	81
35	Electrochemical machining of superhydrophobic surfaces on mold steel substrates. Surface and Coatings Technology, 2018, 344, 499-506.	4.8	30
36	Water strider-inspired design of a water walking robot using superhydrophobic Al surface. Journal of Dispersion Science and Technology, 2018, 39, 1840-1847.	2.4	18

#	Article	IF	CITATIONS
37	Soft elastic superhydrophobic cotton: A new material for contact time reduction in droplet bouncing. Surface and Coatings Technology, 2018, 347, 420-426.	4.8	20
38	Doping Cu Atoms Excel as the Functional Material to Tune the Wettability for TMeNs Hard Coating. Advanced Materials Interfaces, 2018, 5, 1800391.	3.7	4
39	Multi-functional application of oil-infused slippery Al surface: from anti-icing to corrosion resistance. Journal of Materials Science, 2018, 53, 16099-16109.	3.7	42
40	Reversible lossless manipulation of water droplets with largeâ€range volume. Micro and Nano Letters, 2018, 13, 896-901.	1.3	2
41	Fabrication of extreme wettability patterns with water-film protection for organic liquids. Journal of Dispersion Science and Technology, 2017, 38, 566-569.	2.4	2
42	Anisotropic sliding on dual-rail hydrophilic tracks. Lab on A Chip, 2017, 17, 1041-1050.	6.0	56
43	Superoleophobic surfaces on stainless steel substrates obtained by chemical bath deposition. Micro and Nano Letters, 2017, 12, 76-81.	1.3	19
44	Pouringâ€type gravityâ€driven oil–water separation without water bridge. Micro and Nano Letters, 2017, 12, 744-748.	1.3	8
45	Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State. ACS Nano, 2017, 11, 9259-9267.	14.6	118
46	A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest. Scientific Reports, 2017, 7, 8816.	3.3	110
47	Table Salt as a Template to Prepare Reusable Porous PVDF–MWCNT Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions. Advanced Functional Materials, 2017, 27, 1702926.	14.9	160
48	Super-robust superhydrophobic concrete. Journal of Materials Chemistry A, 2017, 5, 14542-14550.	10.3	170
49	Longâ€lasting oil wettability patterns fabrication on superoleophobic surfaces by atmospheric pressure DBD plasma jet. Micro and Nano Letters, 2017, 12, 1000-1005.	1.3	3
50	Fabrication and application of superhydrophobic-superoleophilic porous Cu sponge., 2017,,.		0
51	Unpowered oil absorption by a wettability sponge based oil skimmer. RSC Advances, 2016, 6, 88001-88009.	3.6	22
52	Atmospheric Pressure Plasma Functionalized Polymer Mesh: An Environmentally Friendly and Efficient Tool for Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6828-6837.	6.7	91
53	Patterning of water traps using close-loop hydrophilic micro grooves. Applied Surface Science, 2016, 389, 447-454.	6.1	16
54	Surface modification of tube inner wall by transferred atmospheric pressure plasma. Applied Surface Science, 2016, 389, 967-976.	6.1	37

#	Article	IF	CITATIONS
55	Adjusting the stability of plasma treated superhydrophobic surfaces by different modifications or microstructures. RSC Advances, 2016, 6, 79437-79447.	3.6	14
56	Power-free water pump based on a superhydrophobic surface: generation of a mushroom-like jet and anti-gravity long-distance transport. Journal of Materials Chemistry A, 2016, 4, 13771-13777.	10.3	16
57	Fast fabrication of superhydrophobic surfaces on Ti–6Al–4V substrates by deposition of lead. Surface and Coatings Technology, 2016, 302, 507-514.	4.8	15
58	Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques. Scientific Reports, 2016, 6, 23985.	3.3	52
59	Fabrication of Long-Term Underwater Superoleophobic Al Surfaces and Application on Underwater Lossless Manipulation of Non-Polar Organic Liquids. Scientific Reports, 2016, 6, 31818.	3.3	18
60	Plasma Hydrophilization of Superhydrophobic Surface and Its Aging Behavior: The Effect of Micro/nanostructured Surface. Surface and Interface Analysis, 2016, 48, 368-372.	1.8	13
61	Underwater Spontaneous Pumpless Transportation of Nonpolar Organic Liquids on Extreme Wettability Patterns. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2942-2949.	8.0	72
62	Controllable Water Adhesion and Anisotropic Sliding on Patterned Superhydrophobic Surface for Droplet Manipulation. Journal of Physical Chemistry C, 2016, 120, 7233-7240.	3.1	89
63	Fabrication of superoleophobic surfaces on Zn substrates by electrochemical etching and perfluorooctanoic acid modification. Micro and Nano Letters, 2016, 11, 109-113.	1.3	1
64	Stability of plasma treated superhydrophobic surfaces under different ambient conditions. Journal of Colloid and Interface Science, 2016, 470, 221-228.	9.4	67
65	Oil Spills: Barrel-Shaped Oil Skimmer Designed for Collection of Oil from Spills (Adv. Mater.) Tj ETQq1 1 0.78431	4 rgBT /O\	verlock 10 Tf
66	Barrelâ€Shaped Oil Skimmer Designed for Collection of Oil from Spills. Advanced Materials Interfaces, 2015, 2, 1500350.	3.7	112
67	Hydrophilic patterning of superhydrophobic surfaces by atmosphericâ€pressure plasma jet. Micro and Nano Letters, 2015, 10, 105-108.	1.3	35
68	Robust self-cleaning surfaces that function when exposed to either air or oil. Science, 2015, 347, 1132-1135.	12.6	1,494
69	Creating robust superamphiphobic coatings for both hard and soft materials. Journal of Materials Chemistry A, 2015, 3, 20999-21008.	10.3	123
70	Fabrication of superhydrophobic surfaces on copper substrates via flow plating technology. Micro and Nano Letters, 2015, 10, 88-92.	1.3	16
71	Directional transport of water droplets on superhydrophobic aluminium alloy surface. Micro and Nano Letters, 2015, 10, 343-346.	1.3	12
72	Water droplets bouncing on superhydrophobic soft porous materials. Journal of Materials Chemistry A, 2014, 2, 12177-12184.	10.3	45

#	Article	lF	CITATIONS
73	Creating superhydrophobic mild steel surfaces for water proofing and oil–water separation. Journal of Materials Chemistry A, 2014, 2, 11628-11634.	10.3	153
74	Self-Driven One-Step Oil Removal from Oil Spill on Water via Selective-Wettability Steel Mesh. ACS Applied Materials & Diterfaces, 2014, 6, 19858-19865.	8.0	226
75	A simple immersion approach for fabricating superhydrophobic Mg alloy surfaces. Applied Surface Science, 2013, 266, 445-450.	6.1	78
76	Fabrication of superoleophobic surfaces on Al substrates. Journal of Materials Chemistry A, 2013, 1, 14783.	10.3	79
77	Fabrication Technology of Low-Adhesive Superhydrophobic and Superamphiphobic Surfaces Based on Electrochemical Machining Method. Journal of Micro and Nano-Manufacturing, 2013, 1, .	0.7	7
78	Anisotropic sliding of multipleâ€level biomimetic riceâ€leaf surfaces on aluminium substrates. Micro and Nano Letters, 2013, 8, 801-804.	1.3	21
79	Fabrication of Low-Adhesive Superhydrophobic Al Surfaces via Self-Assembled Primary Cell Assisted Etching. Journal of Dispersion Science and Technology, 2013, 34, 908-913.	2.4	5
80	Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method. Chemical Engineering Journal, 2012, 211-212, 143-152.	12.7	107
81	A rapid two-step electroless deposition process to fabricate superhydrophobic coatings on steel substrates. Journal of Coatings Technology Research, 2012, 9, 643-650.	2.5	14
82	Fabrication of superhydrophobic surfaces with hierarchical rough structures on Mg alloy substrates via chemical corrosion method. Micro and Nano Letters, 2012, 7, 204.	1.3	13
83	One-step electrochemical machining of superhydrophobic surfaces on aluminum substrates. Journal of Materials Science, 2012, 47, 162-168.	3.7	72
84	Rapid Fabrication of Large-Area, Corrosion-Resistant Superhydrophobic Mg Alloy Surfaces. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4404-4414.	8.0	343
85	Fabrication of superhydrophobic surfaces on aluminum substrates using NaNO3 electrolytes. Journal of Materials Science, 2011, 46, 5925-5930.	3.7	38