Jinlong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust self-cleaning surfaces that function when exposed to either air or oil. Science, 2015, 347, 1132-1135.	12.6	1,494
2	Rapid Fabrication of Large-Area, Corrosion-Resistant Superhydrophobic Mg Alloy Surfaces. ACS Applied Materials & Interfaces, 2011, 3, 4404-4414.	8.0	343
3	Self-Driven One-Step Oil Removal from Oil Spill on Water via Selective-Wettability Steel Mesh. ACS Applied Materials & Interfaces, 2014, 6, 19858-19865.	8.0	226
4	Super-robust superhydrophobic concrete. Journal of Materials Chemistry A, 2017, 5, 14542-14550.	10.3	170
5	Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. Journal of Colloid and Interface Science, 2019, 541, 86-92.	9.4	170
6	Table Salt as a Template to Prepare Reusable Porous PVDF–MWCNT Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions. Advanced Functional Materials, 2017, 27, 1702926.	14.9	160
7	Creating superhydrophobic mild steel surfaces for water proofing and oil–water separation. Journal of Materials Chemistry A, 2014, 2, 11628-11634.	10.3	153
8	Creating robust superamphiphobic coatings for both hard and soft materials. Journal of Materials Chemistry A, 2015, 3, 20999-21008.	10.3	123
9	Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State. ACS Nano, 2017, 11, 9259-9267.	14.6	118
10	Barrelâ€Shaped Oil Skimmer Designed for Collection of Oil from Spills. Advanced Materials Interfaces, 2015, 2, 1500350.	3.7	112
11	A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest. Scientific Reports, 2017, 7, 8816.	3.3	110
12	Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method. Chemical Engineering Journal, 2012, 211-212, 143-152.	12.7	107
13	Atmospheric Pressure Plasma Functionalized Polymer Mesh: An Environmentally Friendly and Efficient Tool for Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6828-6837.	6.7	91
14	High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. Journal of Materials Chemistry A, 2019, 7, 13567-13576.	10.3	90
15	Controllable Water Adhesion and Anisotropic Sliding on Patterned Superhydrophobic Surface for Droplet Manipulation. Journal of Physical Chemistry C, 2016, 120, 7233-7240.	3.1	89
16	A superhydrophilic cement-coated mesh: an acid, alkali, and organic reagent-free material for oil/water separation. Nanoscale, 2018, 10, 1920-1929.	5.6	81
17	Fabrication of superoleophobic surfaces on Al substrates. Journal of Materials Chemistry A, 2013, 1, 14783.	10.3	79
18	A simple immersion approach for fabricating superhydrophobic Mg alloy surfaces. Applied Surface Science, 2013, 266, 445-450	6.1	78

#	Article	IF	CITATIONS
19	Colorful superhydrophobic concrete coating. Chemical Engineering Journal, 2021, 403, 126348.	12.7	77
20	One-step electrochemical machining of superhydrophobic surfaces on aluminum substrates. Journal of Materials Science, 2012, 47, 162-168.	3.7	72
21	Underwater Spontaneous Pumpless Transportation of Nonpolar Organic Liquids on Extreme Wettability Patterns. ACS Applied Materials & Interfaces, 2016, 8, 2942-2949.	8.0	72
22	Superhydrophobic Nickel-Electroplated Carbon Fibers for Versatile Oil/Water Separation with Excellent Reusability and High Environmental Stability. ACS Applied Materials & Interfaces, 2020, 12, 24390-24402.	8.0	72
23	Robust platform for water harvesting and directional transport. Journal of Materials Chemistry A, 2018, 6, 5635-5643.	10.3	71
24	Stability of plasma treated superhydrophobic surfaces under different ambient conditions. Journal of Colloid and Interface Science, 2016, 470, 221-228.	9.4	67
25	Anisotropic sliding on dual-rail hydrophilic tracks. Lab on A Chip, 2017, 17, 1041-1050.	6.0	56
26	Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing. ACS Applied Materials & Interfaces, 2019, 11, 45345-45353.	8.0	56
27	Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques. Scientific Reports, 2016, 6, 23985.	3.3	52
28	Maskless Hydrophilic Patterning of the Superhydrophobic Aluminum Surface by an Atmospheric Pressure Microplasma Jet for Water Adhesion Controlling. ACS Applied Materials & Interfaces, 2018, 10, 7497-7503.	8.0	46
29	Water droplets bouncing on superhydrophobic soft porous materials. Journal of Materials Chemistry A, 2014, 2, 12177-12184.	10.3	45
30	Multi-functional application of oil-infused slippery Al surface: from anti-icing to corrosion resistance. Journal of Materials Science, 2018, 53, 16099-16109.	3.7	42
31	Fabrication of superhydrophobic surfaces on aluminum substrates using NaNO3 electrolytes. Journal of Materials Science, 2011, 46, 5925-5930.	3.7	38
32	Dropletâ€Based Selfâ€Propelled Miniboat. Advanced Functional Materials, 2020, 30, 1910778.	14.9	38
33	Surface modification of tube inner wall by transferred atmospheric pressure plasma. Applied Surface Science, 2016, 389, 967-976.	6.1	37
34	Underwater Curvature-Driven Transport between Oil Droplets on Patterned Substrates. ACS Applied Materials & Interfaces, 2018, 10, 15258-15269.	8.0	36
35	Hydrophilic patterning of superhydrophobic surfaces by atmosphericâ€pressure plasma jet. Micro and Nano Letters, 2015, 10, 105-108.	1.3	35
36	Large-area fabrication of superhydrophobic micro-conical pillar arrays on various metallic substrates. Nanoscale, 2021, 13, 14023-14034.	5.6	32

#	Article	IF	CITATIONS
37	Optimization of bioinspired surfaces with enhanced water transportation capacity. Chemical Engineering Journal, 2022, 433, 134568.	12.7	32
38	Electrochemical 3D printing of superhydrophobic pillars with conical, cylindrical, and inverted conical shapes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126869.	4.7	31
39	Electrochemical machining of superhydrophobic surfaces on mold steel substrates. Surface and Coatings Technology, 2018, 344, 499-506.	4.8	30
40	Unpowered oil absorption by a wettability sponge based oil skimmer. RSC Advances, 2016, 6, 88001-88009.	3.6	22
41	Facile preparation of durable superhydrophobic-superoleophilic mesh using simple chemical oxidation for oil-water separation under harsh conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126777.	4.7	22
42	Anisotropic sliding of multipleâ€level biomimetic riceâ€leaf surfaces on aluminium substrates. Micro and Nano Letters, 2013, 8, 801-804.	1.3	21
43	A universal method to create surface patterns with extreme wettability on metal substrates. Journal of Colloid and Interface Science, 2019, 535, 100-110.	9.4	21
44	Soft elastic superhydrophobic cotton: A new material for contact time reduction in droplet bouncing. Surface and Coatings Technology, 2018, 347, 420-426.	4.8	20
45	Superoleophobic surfaces on stainless steel substrates obtained by chemical bath deposition. Micro and Nano Letters, 2017, 12, 76-81.	1.3	19
46	Through-mask electrochemical micromachining of micro pillar arrays on aluminum. Surface and Coatings Technology, 2020, 401, 126277.	4.8	19
47	Fabrication of Long-Term Underwater Superoleophobic Al Surfaces and Application on Underwater Lossless Manipulation of Non-Polar Organic Liquids. Scientific Reports, 2016, 6, 31818.	3.3	18
48	Water strider-inspired design of a water walking robot using superhydrophobic Al surface. Journal of Dispersion Science and Technology, 2018, 39, 1840-1847.	2.4	18
49	Fabrication of superhydrophobic surfaces on copper substrates via flow plating technology. Micro and Nano Letters, 2015, 10, 88-92.	1.3	16
50	Patterning of water traps using close-loop hydrophilic micro grooves. Applied Surface Science, 2016, 389, 447-454.	6.1	16
51	Power-free water pump based on a superhydrophobic surface: generation of a mushroom-like jet and anti-gravity long-distance transport. Journal of Materials Chemistry A, 2016, 4, 13771-13777.	10.3	16
52	Fast fabrication of superhydrophobic surfaces on Ti–6Al–4V substrates by deposition of lead. Surface and Coatings Technology, 2016, 302, 507-514.	4.8	15
53	A rapid two-step electroless deposition process to fabricate superhydrophobic coatings on steel substrates. Journal of Coatings Technology Research, 2012, 9, 643-650.	2.5	14
54	Adjusting the stability of plasma treated superhydrophobic surfaces by different modifications or microstructures. RSC Advances, 2016, 6, 79437-79447.	3.6	14

#	Article	IF	CITATIONS
55	Maintenance of superhydrophobic concrete for high compressive strength. Journal of Materials Science, 2021, 56, 4588-4598.	3.7	14
56	Fabrication of superhydrophobic surfaces with hierarchical rough structures on Mg alloy substrates via chemical corrosion method. Micro and Nano Letters, 2012, 7, 204.	1.3	13
57	Plasma Hydrophilization of Superhydrophobic Surface and Its Aging Behavior: The Effect of Micro/nanostructured Surface. Surface and Interface Analysis, 2016, 48, 368-372.	1.8	13
58	Directional transport of water droplets on superhydrophobic aluminium alloy surface. Micro and Nano Letters, 2015, 10, 343-346.	1.3	12
59	Influence of water addition on the modification of polyethylene surface by nitrogen atmospheric pressure plasma jet. Journal of Applied Polymer Science, 2019, 136, 47136.	2.6	10
60	Atmospheric pressure cold plasma jet–assisted micro-milling TC4 titanium alloy. International Journal of Advanced Manufacturing Technology, 2021, 112, 2201-2209.	3.0	10
61	Drop impact on elastic superhydrophobic films: From pancake bouncing to saucer bouncing. Materials Letters, 2021, 285, 129076.	2.6	9
62	Superhydrophobic straw felt for oil absorption. Results in Engineering, 2022, 13, 100370.	5.1	9
63	Pouringâ€ŧype gravityâ€driven oil–water separation without water bridge. Micro and Nano Letters, 2017, 12, 744-748.	1.3	8
64	Comparative study of surface modification of polyethylene by parallel-field and cross-field atmospheric pressure plasma jets. Journal of Applied Physics, 2019, 125, .	2.5	8
65	3D FEM simulation of chip breakage in turning AISI1045 with complicate-grooved insert. International Journal of Advanced Manufacturing Technology, 2020, 108, 1331-1341.	3.0	8
66	A facile and less-polluting electrochemical method to fabricate multifunctional superhydrophobic film on iron materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124495.	4.7	8
67	Slippery concrete for sanitation. Progress in Organic Coatings, 2022, 171, 107022.	3.9	8
68	Fabrication Technology of Low-Adhesive Superhydrophobic and Superamphiphobic Surfaces Based on Electrochemical Machining Method. Journal of Micro and Nano-Manufacturing, 2013, 1, .	0.7	7
69	Nanotextured Surfaces with Underwater Anisotropic Sliding Resistance for Oil Transfer and Coalescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123691.	4.7	7
70	Fabrication of Low-Adhesive Superhydrophobic Al Surfaces via Self-Assembled Primary Cell Assisted Etching. Journal of Dispersion Science and Technology, 2013, 34, 908-913.	2.4	5
71	Energy conversion based on superhydrophobic surfaces. Physical Chemistry Chemical Physics, 2020, 22, 25430-25444.	2.8	5
72	Doping Cu Atoms Excel as the Functional Material to Tune the Wettability for TMeNs Hard Coating. Advanced Materials Interfaces, 2018, 5, 1800391.	3.7	4

#	Article	IF	CITATIONS
73	Open surface multifunctional droplet manipulation platform fabricated by micromilling. Journal of Materials Science, 2019, 54, 10715-10727.	3.7	4
74	Longâ€lasting oil wettability patterns fabrication on superoleophobic surfaces by atmospheric pressure DBD plasma jet. Micro and Nano Letters, 2017, 12, 1000-1005.	1.3	3
75	Capillary drainage of a sessile droplet through a hole. Physical Review Fluids, 2020, 5, .	2.5	3
76	Preparation of Transparent Sandwich-like Superhydrophobic Coating on Glass with High Stability and Self-Cleaning Properties. Coatings, 2022, 12, 228.	2.6	3
77	Self-propelling superhydrophobic miniboat with a superhydrophilic wedge-shaped pattern. Results in Engineering, 2022, 14, 100388.	5.1	3
78	Oil Spills: Barrel-Shaped Oil Skimmer Designed for Collection of Oil from Spills (Adv. Mater.) Tj ETQq0 0 0 rgBT /C	verlock 10	D Tf 50 542 T

79	Fabrication of extreme wettability patterns with water-film protection for organic liquids. Journal of Dispersion Science and Technology, 2017, 38, 566-569.	2.4	2
80	Self-propelled hydrogels that glide on water. Science Robotics, 2021, 6, .	17.6	2
81	Reversible lossless manipulation of water droplets with largeâ€range volume. Micro and Nano Letters, 2018, 13, 896-901.	1.3	2
82	Fabrication of superoleophobic surfaces on Zn substrates by electrochemical etching and perfluorooctanoic acid modification. Micro and Nano Letters, 2016, 11, 109-113.	1.3	1
83	Experimental study on correcting the contour error of a rotary surface machined by electrochemical mechanical machining. International Journal of Advanced Manufacturing Technology, 2019, 104, 2827-2838.	3.0	0
84	Study on Dry-ice Particle Jet Assisted Decontamination Technology. Journal of Physics: Conference Series, 2021, 1948, 012123.	0.4	0
85	Fabrication and application of superhydrophobic-superoleophilic porous Cu sponge. , 2017, , .		0