Amine Slassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/420047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of oxygen evolution reaction by X-doped (XÂ= Se, S, P) holey graphitic carbon shell encapsulating NiCoFe nanoparticles: a combined experimental and theoretical study. Materials Today Chemistry, 2022, 23, 100706.	3.5	4
2	Band offset engineering at C ₂ N/MSe ₂ (M = Mo, W) interfaces. RSC Advances, 2022, 12, 12068-12077.	3.6	5
3	A supramolecular non centrosymmetric 2,6-diaminopyridinium perchlorate salt: Crystal structure and optoelectronic DFT study. Journal of Molecular Structure, 2022, 1267, 133561.	3.6	3
4	Tuning the Electronic Bandgap of Graphdiyne by H‣ubstitution to Promote Interfacial Charge Carrier Separation for Enhanced Photocatalytic Hydrogen Production. Advanced Functional Materials, 2021, 31, 2100994.	14.9	41
5	Photocatalysis: Tuning the Electronic Bandgap of Graphdiyne by Hâ€Substitution to Promote Interfacial Charge Carrier Separation for Enhanced Photocatalytic Hydrogen Production (Adv. Funct. Mater.) Tj ETQq1 1 0.	78434194 rg	BT\$Overloc
6	The role of selenium vacancies in the enhancement of electrocatalytic activity of CoNiSe2 for the oxygen evolution reaction. Journal of Power Sources, 2021, 514, 230596.	7.8	39
7	Molecular Functionalization of Chemically Active Defects in WSe 2 for Enhanced Optoâ€Electronics. Advanced Functional Materials, 2020, 30, 2005045.	14.9	22
8	Interlayer Bonding in Two-Dimensional Materials: The Special Case of SnP ₃ and GeP ₃ . Journal of Physical Chemistry Letters, 2020, 11, 4503-4510.	4.6	24
9	Theoretical characterization of the electronic properties of heterogeneous vertical stacks of 2D metal dichalcogenides containing one doped layer. Physical Chemistry Chemical Physics, 2020, 22, 14088-14098.	2.8	5
10	Ohmic/Schottky barrier engineering in metal/SnP3 heterostructures. Journal of Alloys and Compounds, 2020, 831, 154800.	5.5	14
11	Collective Dipoleâ€Dominated Doping of Monolayer MoS ₂ : Orientation and Magnitude Control via the Supramolecular Approach. Advanced Functional Materials, 2020, 30, 2002846.	14.9	27
12	Tuning the Optical and Electrical Properties of Few‣ayer Black Phosphorus via Physisorption of Small Solvent Molecules. Small, 2019, 15, e1903432.	10.0	21
13	Carbon microspheres derived from walnut shell: Rapid and remarkable uptake of heavy metal ions, molecular computational study and surface modeling. Chemosphere, 2019, 231, 140-150.	8.2	42
14	Black Phosphorus: Tuning the Optical and Electrical Properties of Fewâ€Layer Black Phosphorus via Physisorption of Small Solvent Molecules (Small 47/2019). Small, 2019, 15, 1970252.	10.0	3
15	Theoretical characterization of strain and interfacial electronic effects in donor-acceptor bilayers of 2D transition metal dichalcogenides. 2D Materials, 2019, 6, 015025.	4.4	11
16	Doping of Monolayer Transition-Metal Dichalcogenides via Physisorption of Aromatic Solvent Molecules. Journal of Physical Chemistry Letters, 2019, 10, 540-547.	4.6	52
17	Fabrication and characterization of novel transparent conducting oxide N-CNT doped ZnO for photovoltaic applications. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	16
18	Photo/Electrocatalytic Properties of Nanocrystalline ZnO and La–Doped ZnO: Combined DFT Fundamental Semiconducting Properties and Experimental Study. ChemistrySelect, 2018, 3, 7778-7791.	1.5	34

AMINE SLASSI

#	Article	IF	CITATIONS
19	Magnetocaloric effect in Sr2CrIrO6 double perovskite: Monte Carlo simulation. Journal of Physics and Chemistry of Solids, 2017, 104, 32-35.	4.0	24
20	Low field magnetocaloric effect in the double perovskite Sr 2 CrMoO 6 : Monte Carlo simulation. Computational Condensed Matter, 2017, 11, 55-59.	2.1	18
21	The effect of nitrogen doping on magnetic and electronic properties of Fe0.98TM0.02S2 pyrite (TM=V) Tj ETQq1	1 0,78431 1.9	4 ₆ rgBT /Ove
22	First-Principles Study of Magnetic and Electronic Properties of Fluorine-Doped Sn 0 . 9 8 Mn 0 . 0 2 O 2 System. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2979-2985.	1.8	12
23	First-principles investigation of the electronic and optical properties of Al-doped FeS2 pyrite for photovoltaic applications. Optical and Quantum Electronics, 2016, 48, 1.	3.3	25
24	Magnetism, hysteresis cycle, and Ir-substitution doping of Sr 2 CrIrO 6 double perovskite: A Monte Carlo simulation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 4075-4082.	2.1	12
25	Electronic band structure and visible-light photocatalytic activity of Bi ₂ WO ₆ : elucidating the effect of lutetium doping. RSC Advances, 2016, 6, 101105-101114.	3.6	57
26	New potential dopants for BaSnO3-based transparent conducting oxides. Optical and Quantum Electronics, 2016, 48, 1.	3.3	5
27	Ab initio study on the structural, electronic, optical and electrical properties of Mo-, Nb- and Ta-doped rutile SnO2. Optical and Quantum Electronics, 2016, 48, 1.	3.3	12
28	Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects. Journal of Magnetism and Magnetic Materials, 2016, 406, 212-216.	2.3	24
29	Electronic structure and optical properties of Cu3PX4(X=S and Se): Solar cell made of abundant materials. Materials Science in Semiconductor Processing, 2015, 39, 217-222.	4.0	4
30	Physical properties of Mo-doped ZnO by first principles and Boltzmann equations. Optical and Quantum Electronics, 2015, 47, 2465-2477.	3.3	8
31	Ab initio study of a cubic perovskite: Structural, electronic, optical and electrical properties of native, lanthanum- and antimony-doped barium tin oxide. Materials Science in Semiconductor Processing, 2015, 32, 100-106.	4.0	21
32	Ab initio study on the electronic, optical and electrical properties of Ti-, Sn- and Zr-doped ZnO. Solid State Communications, 2015, 218, 45-48.	1.9	19
33	The Magnetism Behavior of Fe0.93V0.02Cr0.05S2 Pyrite Within Ab Initio Calculation. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3645-3649.	1.8	7
34	First-principles and Boltzmann equation studies of the Cl-doped ZnO transparent conducting oxide. Optik, 2015, 126, 4751-4756.	2.9	10
35	On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study. Journal of Alloys and Compounds, 2014, 605, 118-123.	5.5	35