Thomas Gebhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200388/publications.pdf Version: 2024-02-01

THOMAS CERHARDT

#	Article	IF	CITATIONS
1	CRISPitope: A generic platform to model target antigens for adoptive TÂcell transfer therapy in mouse tumor models. STAR Protocols, 2022, 3, 101038.	0.5	1
2	Ptpn2 and KLRG1 regulate the generation and function of tissue-resident memory CD8+ T cells in skin. Journal of Experimental Medicine, 2021, 218, .	4.2	12
3	Tissueâ€resident regulatory T cells accumulate at human barrier lymphoid organs. Immunology and Cell Biology, 2021, 99, 894-906.	1.0	6
4	Tumor reactivity of CD8 ⁺ T cells favors acquisition of dysfunctional states in human melanoma. Immunology and Cell Biology, 2021, 99, 914-916.	1.0	0
5	CD4+ T cell immunity to Salmonella is transient in the circulation. PLoS Pathogens, 2021, 17, e1010004.	2.1	5
6	<scp>PTPN</scp> 2 phosphatase deletion in T cells promotes antiâ€ŧumour immunity and <scp>CAR</scp> T ell efficacy in solid tumours. EMBO Journal, 2020, 39, e103637.	3.5	79
7	Skin colonization with beta papilloma virus drives tissue immunity and resistance to squamous cell cancer. Immunology and Cell Biology, 2020, 98, 9-11.	1.0	5
8	Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity, 2020, 53, 564-580.e9.	6.6	27
9	CD103+ tumor-resident CD8+ T cell numbers underlie improved patient survival in oropharyngeal squamous cell carcinoma. , 2020, 8, e000452.		26
10	Sex-specific adipose tissue imprinting of regulatory T cells. Nature, 2020, 579, 581-585.	13.7	141
11	Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity, 2019, 51, 285-297.e5.	6.6	378
12	Should I stay or should I go—Reconciling clashing perspectives on CD4 ⁺ tissue-resident memory T cells. Science Immunology, 2019, 4, .	5.6	15
13	Tissue-Resident Memory T Cells in Cancer Immunosurveillance. Trends in Immunology, 2019, 40, 735-747.	2.9	123
14	The Selective Expansion and Targeted Accumulation of Bone Marrow–Derived Macrophages Drive Cardiac Vasculitis. Journal of Immunology, 2019, 202, 3282-3296.	0.4	9
15	Comparative analysis reveals a role for TGF-Î ² in shaping the residency-related transcriptional signature in tissue-resident memory CD8+ T cells. PLoS ONE, 2019, 14, e0210495.	1.1	49
16	Accumulation of CD103 ⁺ CD8 ⁺ T cells in a cutaneous melanoma micrometastasis. Clinical and Translational Immunology, 2019, 8, e1100.	1.7	8
17	Tissue-resident memory CD8+ T cells promote melanoma–immune equilibrium in skin. Nature, 2019, 565, 366-371.	13.7	266
18	Classical Type 1 Dendritic Cells Dominate Priming of Th1 Responses to Herpes Simplex Virus Type 1 Skin Infection. Journal of Immunology, 2019, 202, 653-663.	0.4	27

THOMAS GEBHARDT

#	Article	IF	CITATIONS
19	Tissue-resident memory T cells orchestrate tumour-immune equilibrium. Cell Stress, 2019, 3, 162-164.	1.4	8
20	Tissueâ€resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunological Reviews, 2018, 283, 54-76.	2.8	142
21	CRISPR/Cas9: A tool for immunological research. European Journal of Immunology, 2018, 48, 576-583.	1.6	19
22	Staged development of long-lived T-cell receptor αβ T H 17 resident memory T-cell population to Candida albicans after skin infection. Journal of Allergy and Clinical Immunology, 2018, 142, 647-662.	1.5	104
23	Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nature Immunology, 2018, 19, 183-191.	7.0	266
24	CD103+ Tumor-Resident CD8+ T Cells Are Associated with Improved Survival in Immunotherapy-NaÃ⁻ve Melanoma Patients and Expand Significantly During Anti–PD-1 Treatment. Clinical Cancer Research, 2018, 24, 3036-3045.	3.2	297
25	Effective Priming of Herpes Simplex Virus-Specific CD8 + T Cells In Vivo Does Not Require Infected Dendritic Cells. Journal of Virology, 2018, 92, .	1.5	14
26	Optimal protection against <i>Salmonella</i> infection requires noncirculating memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10416-10421.	3.3	37
27	Cutting Edge: Tissue-Resident Memory T Cells Generated by Multiple Immunizations or Localized Deposition Provide Enhanced Immunity. Journal of Immunology, 2017, 198, 2233-2237.	0.4	94
28	Sustained accumulation of antigenâ€presenting cells after infection promotes local Tâ€cell immunity. Immunology and Cell Biology, 2017, 95, 878-883.	1.0	8
29	Bone Marrow T Cells and the Integrated Functions of Recirculating and Tissue-Resident Memory T Cells. Frontiers in Immunology, 2016, 7, 51.	2.2	77
30	Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nature Communications, 2016, 7, 11514.	5.8	161
31	Hippo Wades into Cancer Immunology. Developmental Cell, 2016, 39, 635-637.	3.1	11
32	Parallels and differences between innate and adaptive lymphocytes. Nature Immunology, 2016, 17, 490-494.	7.0	37
33	Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science, 2016, 352, 459-463.	6.0	721
34	Skin tumor immunity: Site does matter for antigen presentation by DCs. European Journal of Immunology, 2016, 46, 543-546.	1.6	3
35	Distinct recirculation potential of CD69 ⁺ CD103 ^{â^'} and CD103 ⁺ thymic memory CD8 ⁺ T cells. Immunology and Cell Biology, 2016, 94, 975-980.	1.0	17
36	T Cell Help Amplifies Innate Signals in CD8 + DCs for Optimal CD8 + T Cell Priming. Cell Reports, 2016, 14, 586-597.	2.9	62

THOMAS GEBHARDT

#	Article	IF	CITATIONS
37	Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs. PLoS Pathogens, 2016, 12, e1005799.	2.1	74
38	Recirculating and Resident Memory CD8 + T Cells. , 2016, , 344-352.		0
39	Limited Internodal Migration of T Follicular Helper Cells after Peripheral Infection with Herpes Simplex Virus-1. Journal of Immunology, 2015, 195, 4892-4899.	0.4	Ο
40	Unpleasant memories: tissue-embedded T cell memory drives skin hypersensitivity. Nature Medicine, 2015, 21, 551-552.	15.2	4
41	Cutting Edge: CD69 Interference with Sphingosine-1-Phosphate Receptor Function Regulates Peripheral T Cell Retention. Journal of Immunology, 2015, 194, 2059-2063.	0.4	398
42	Multilayered T-cell memory in human skin. Annals of Translational Medicine, 2015, 3, 311.	0.7	0
43	Distinct APC Subtypes Drive Spatially Segregated CD4+ and CD8+ T-Cell Effector Activity during Skin Infection with HSV-1. PLoS Pathogens, 2014, 10, e1004303.	2.1	75
44	Interferon-Î ³ regulates growth and controls FcÎ ³ receptor expression and activation in human intestinal mast cells. BMC Immunology, 2014, 15, 27.	0.9	21
45	FRT - Fondation Rene Touraine. Experimental Dermatology, 2014, 23, 772-785.	1.4	0
46	A neighborhood watch upholds local immune protection. Science, 2014, 346, 40-41.	6.0	11
47	Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues. Current Opinion in Immunology, 2013, 25, 329-333.	2.4	56
48	The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nature Immunology, 2013, 14, 1294-1301.	7.0	1,037
49	Memory T Cell Subsets, Migration Patterns, and Tissue Residence. Annual Review of Immunology, 2013, 31, 137-161.	9.5	668
50	Peripheral tissue surveillance and residency by memory T cells. Trends in Immunology, 2013, 34, 27-32.	2.9	83
51	Skinâ€resident memory T cells keep herpes simplex virus at bay. Immunology and Cell Biology, 2013, 91, 441-442.	1.0	2
52	Tissueâ€resident memory <scp>T</scp> cells: Local guards of the thymus. European Journal of Immunology, 2013, 43, 2259-2262.	1.6	10
53	Long-lived epithelial immunity by tissue-resident memory T (T _{RM}) cells in the absence of persisting local antigen presentation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7037-7042.	3.3	522
54	Local immunity by tissue-resident CD8+ memory T cells. Frontiers in Immunology, 2012, 3, 340.	2.2	96

THOMAS GEBHARDT

#	Article	IF	CITATIONS
55	NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8+ T cells. Nature Immunology, 2012, 13, 162-169.	7.0	150
56	Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature, 2011, 477, 216-219.	13.7	460
57	Interaction between dendritic cells and T cells during peripheral virus infections: a role for antigen presentation beyond lymphoid organs?. Current Opinion in Immunology, 2011, 23, 124-130.	2.4	20
58	Characterization of an Immediate Splenic Precursor of CD8+ Dendritic Cells Capable of Inducing Antiviral T Cell Responses. Journal of Immunology, 2009, 182, 4200-4207.	0.4	86
59	Granzyme A expression reveals distinct cytolytic CTL subsets following influenza A virus infection. European Journal of Immunology, 2009, 39, 1203-1210.	1.6	33
60	A helpers' guide to infection. Nature, 2009, 462, 418-419.	13.7	5
61	Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunology, 2009, 10, 524-530.	7.0	946
62	CD8 + Tâ€cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunology and Cell Biology, 2008, 86, 666-675.	1.0	41
63	Neuropeptide Y receptor-specifically modulates human neutrophil function. Journal of Neuroimmunology, 2008, 195, 88-95.	1.1	44
64	Cutting Edge: Enhanced IL-2 Signaling Can Convert Self-Specific T Cell Response from Tolerance to Autoimmunity. Journal of Immunology, 2008, 180, 5789-5793.	0.4	22
65	Cutting Edge: Local Recall Responses by Memory T Cells Newly Recruited to Peripheral Nonlymphoid Tissues. Journal of Immunology, 2008, 181, 5837-5841.	0.4	55
66	The interplay between dendritic cell subsets and T cells during peripheral virus infection. FASEB Journal, 2008, 22, 855.2.	0.2	0
67	A role for neuropeptide Y (NPY) in phagocytosis: Implications for innate and adaptive immunity. Peptides, 2007, 28, 373-376.	1.2	56
68	Role of Mast Cells and Eosinophils in Neuroimmune Interactions Regulating Mucosal Inflammation in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, 2006, 579, 177-208.	0.8	21
69	?2-Adrenoceptor-mediated suppression of human intestinal mast cell functions is caused by disruption of filamentous actin dynamics. European Journal of Immunology, 2005, 35, 1124-1132.	1.6	36
70	Human Intestinal Fibroblasts Prevent Apoptosis in Human Intestinal Mast Cells by a Mechanism Independent of Stem Cell Factor, IL-3, IL-4, and Nerve Growth Factor. Journal of Immunology, 2004, 172, 260-267.	0.4	46
71	Reduced tissue immigration of monocytes by neuropeptide Y during endotoxemia is associated with Y2 receptor activation. Journal of Neuroimmunology, 2004, 155, 1-12.	1.1	54
72	Role of activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells in IgE receptor-mediated cytokine expression in mature human mast cells. Journal of Allergy and Clinical Immunology, 2003, 111, 1062-1068.	1.5	109

#	Article	IF	CITATIONS
73	Gene therapy by intrahepatic and intratumoral trafficking of p53-VP22 induces regression of liver tumors. Gastroenterology, 2002, 123, 608-618.	0.6	57
74	NPY modulates epinephrine-induced leukocytosis via Y-1 and Y-5 receptor activation in vivo: sympathetic co-transmission during leukocyte mobilization. Journal of Neuroimmunology, 2002, 132, 25-33.	1.1	43
75	Cultured human intestinal mast cells express functional IL-3 receptors and respond to IL-3 by enhancing growth and IgE receptor-dependent mediator release. European Journal of Immunology, 2002, 32, 2308.	1.6	64
76	Immunology: A helpers' guide to infection. Nature, 0, , .	13.7	0