Ji-Eun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200261/publications.pdf

Version: 2024-02-01

172207 264894 6,799 42 41 29 h-index citations g-index papers 47 47 47 13517 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Interplay of BAF and MLL4 promotes cell type-specific enhancer activation. Nature Communications, 2021, 12, 1630.	5.8	38
2	MED1 is a lipogenesis coactivator required for postnatal adipose expansion. Genes and Development, 2021, 35, 713-728.	2.7	9
3	Refining cell-based assay to detect MOG-lgG in patients with central nervous system inflammatory diseases. Multiple Sclerosis and Related Disorders, 2020, 40, 101939.	0.9	24
4	Loss of Function of the Gene Encoding the Histone Methyltransferase KMT2D Leads to Deregulation of Mitochondrial Respiration. Cells, 2020, 9, 1685.	1.8	10
5	Molecular basis for histone H3 "K4me3-K9me3/2―methylation pattern readout by Spindlin1. Journal of Biological Chemistry, 2020, 295, 16877-16887.	1.6	15
6	MLL3/MLL4-Associated PAGR1 Regulates Adipogenesis by Controlling Induction of C/EBP <i>\hat{l}^2</i> and C/EBP <i>\hat{l}^2</i> Molecular and Cellular Biology, 2020, 40, .	1.1	15
7	A Mouse Homolog of a Human TP53 Germline Mutation Reveals a Lipolytic Activity of p53. Cell Reports, 2020, 30, 783-792.e5.	2.9	12
8	Opposing Functions of BRD4 Isoforms in Breast Cancer. Molecular Cell, 2020, 78, 1114-1132.e10.	4.5	95
9	Histone methyltransferase MLL4 controls myofiber identity and muscle performance through MEF2 interaction. Journal of Clinical Investigation, 2020, 130, 4710-4725.	3.9	24
10	Selective binding of the PHD6 finger of MLL4 to histone H4K16ac links MLL4 and MOF. Nature Communications, 2019, 10, 2314.	5.8	40
11	Transcriptional and Epigenomic Regulation of Adipogenesis. Molecular and Cellular Biology, 2019, 39, .	1.1	178
12	H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development. Nucleic Acids Research, 2019, 47, 607-620.	6.5	1,326
13	Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nature Communications, 2018, 9, 1796.	5.8	58
14	MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis. Nucleic Acids Research, 2017, 45, 6388-6403.	6.5	131
15	MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nature Immunology, 2017, 18, 1035-1045.	7.0	63
16	Distinct Roles of Transcription Factors KLF4, Krox20, and Peroxisome Proliferator-Activated Receptor $\langle i \rangle \hat{I}^3 \langle i \rangle$ in Adipogenesis. Molecular and Cellular Biology, 2017, 37, .	1.1	44
17	Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nature Communications, 2017, 8, 2217.	5.8	161
18	Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11871-11876.	3 . 3	172

#	Article	IF	Citations
19	Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature, 2016, 535, 382-387.	13.7	685
20	KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development (Cambridge), 2016, 143, 810-821.	1.2	100
21	A PTIP–PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex. Genes and Development, 2016, 30, 149-163.	2.7	27
22	Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nature Medicine, 2015, 21, 1190-1198.	15.2	372
23	The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nature Medicine, 2015, 21, 1199-1208.	15.2	359
24	<scp>ATP</scp> â€citrate lyase regulates cellular senescence via an <scp>AMPK</scp> â€and p53â€dependent pathway. FEBS Journal, 2015, 282, 361-371.	2.2	53
25	Loss of function of mouse Paxâ€Interacting Protein 1â€associated glutamate rich protein 1a (Pagr1a) leads to reduced Bmp2 expression and defects in chorion and amnion development. Developmental Dynamics, 2014, 243, 937-947.	0.8	19
26	DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature, 2014, 514, 107-111.	13.7	174
27	Transcriptional and epigenetic regulation of PPAR \hat{I}^3 expression during adipogenesis. Cell and Bioscience, 2014, 4, 29.	2.1	182
28	A Multifunctional Protein, EWS, Is Essential for Early Brown Fat Lineage Determination. Developmental Cell, 2013, 26, 393-404.	3.1	70
29	p53 regulates glucose metabolism by miR-34a. Biochemical and Biophysical Research Communications, 2013, 437, 225-231.	1.0	90
30	53BP1 Mediates Productive and Mutagenic DNA Repair through Distinct Phosphoprotein Interactions. Cell, 2013, 153, 1266-1280.	13.5	292
31	H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. ELife, 2013, 2, e01503.	2.8	369
32	UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15324-15329.	3.3	183
33	A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH. Biochemical and Biophysical Research Communications, 2012, 418, 682-688.	1.0	34
34	Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. EMBO Journal, 2012, 32, 45-59.	3.5	162
35	Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO Journal, 2011, 30, 249-262.	3.5	655
36	Histone H3K27 methyltransferase Ezh2 represses <i>Wnt</i> genes to facilitate adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7317-7322.	3.3	258

#	Article	IF	CITATIONS
37	Down syndrome critical region 1 enhances the proteolytic cleavage of calcineurin. Experimental and Molecular Medicine, 2009, 41, 471.	3.2	13
38	Calcineurin dephosphorylates glycogen synthase kinaseâ€3 beta at serineâ€9 in neuroblastâ€derived cells. Journal of Neurochemistry, 2009, 111, 344-354.	2.1	62
39	Histone Methylation Regulator PTIP Is Required for PPARÎ ³ and C/EBPα Expression and Adipogenesis. Cell Metabolism, 2009, 10, 27-39.	7.2	117
40	Hydrogen peroxide triggers the proteolytic cleavage and the inactivation of calcineurin. Journal of Neurochemistry, 2007, 100, 070209222715097-???.	2.1	21
41	Menin represses JunD transcriptional activity in protein kinase CÎ,-mediated Nur77 expression. Experimental and Molecular Medicine, 2005, 37, 466-475.	3.2	37