
Ji-Eun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200261/publications.pdf Version: 2024-02-01

IL-FUNLEE

#	Article	IF	CITATIONS
1	H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development. Nucleic Acids Research, 2019, 47, 607-620.	6.5	1,326
2	Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature, 2016, 535, 382-387.	13.7	685
3	Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO Journal, 2011, 30, 249-262.	3.5	655
4	Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nature Medicine, 2015, 21, 1190-1198.	15.2	372
5	H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. ELife, 2013, 2, e01503.	2.8	369
6	The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nature Medicine, 2015, 21, 1199-1208.	15.2	359
7	53BP1 Mediates Productive and Mutagenic DNA Repair through Distinct Phosphoprotein Interactions. Cell, 2013, 153, 1266-1280.	13.5	292
8	Histone H3K27 methyltransferase Ezh2 represses <i>Wnt</i> genes to facilitate adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7317-7322.	3.3	258
9	UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15324-15329.	3.3	183
10	Transcriptional and epigenetic regulation of PPARÎ ³ expression during adipogenesis. Cell and Bioscience, 2014, 4, 29.	2.1	182
11	Transcriptional and Epigenomic Regulation of Adipogenesis. Molecular and Cellular Biology, 2019, 39, .	1.1	178
12	DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature, 2014, 514, 107-111.	13.7	174
13	Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11871-11876.	3.3	172
14	Histone H3K9 methyltransferase G9a represses PPARÎ ³ expression and adipogenesis. EMBO Journal, 2012, 32, 45-59.	3.5	162
15	Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nature Communications, 2017, 8, 2217.	5.8	161
16	MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis. Nucleic Acids Research, 2017, 45, 6388-6403.	6.5	131
17	Histone Methylation Regulator PTIP Is Required for PPARÎ ³ and C/EBPα Expression and Adipogenesis. Cell Metabolism, 2009, 10, 27-39.	7.2	117
18	KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development (Cambridge), 2016, 143, 810-821.	1.2	100

JI-EUN LEE

#	Article	IF	CITATIONS
19	Opposing Functions of BRD4 Isoforms in Breast Cancer. Molecular Cell, 2020, 78, 1114-1132.e10.	4.5	95
20	p53 regulates glucose metabolism by miR-34a. Biochemical and Biophysical Research Communications, 2013, 437, 225-231.	1.0	90
21	A Multifunctional Protein, EWS, Is Essential for Early Brown Fat Lineage Determination. Developmental Cell, 2013, 26, 393-404.	3.1	70
22	MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nature Immunology, 2017, 18, 1035-1045.	7.0	63
23	Calcineurin dephosphorylates glycogen synthase kinaseâ€3 beta at serineâ€9 in neuroblastâ€derived cells. Journal of Neurochemistry, 2009, 111, 344-354.	2.1	62
24	Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nature Communications, 2018, 9, 1796.	5.8	58
25	<scp>ATP</scp> â€citrate lyase regulates cellular senescence via an <scp>AMPK</scp> â€and p53â€dependent pathway. FEBS Journal, 2015, 282, 361-371.	2.2	53
26	Distinct Roles of Transcription Factors KLF4, Krox20, and Peroxisome Proliferator-Activated Receptor <i>î³</i> in Adipogenesis. Molecular and Cellular Biology, 2017, 37, .	1.1	44
27	Selective binding of the PHD6 finger of MLL4 to histone H4K16ac links MLL4 and MOF. Nature Communications, 2019, 10, 2314.	5.8	40
28	Interplay of BAF and MLL4 promotes cell type-specific enhancer activation. Nature Communications, 2021, 12, 1630.	5.8	38
29	Menin represses JunD transcriptional activity in protein kinase CÎ,-mediated Nur77 expression. Experimental and Molecular Medicine, 2005, 37, 466-475.	3.2	37
30	A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH. Biochemical and Biophysical Research Communications, 2012, 418, 682-688.	1.0	34
31	A PTIP–PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex. Genes and Development, 2016, 30, 149-163.	2.7	27
32	Refining cell-based assay to detect MOG-IgG in patients with central nervous system inflammatory diseases. Multiple Sclerosis and Related Disorders, 2020, 40, 101939.	0.9	24
33	Histone methyltransferase MLL4 controls myofiber identity and muscle performance through MEF2 interaction. Journal of Clinical Investigation, 2020, 130, 4710-4725.	3.9	24
34	Hydrogen peroxide triggers the proteolytic cleavage and the inactivation of calcineurin. Journal of Neurochemistry, 2007, 100, 070209222715097-???.	2.1	21
35	Loss of function of mouse Paxâ€Interacting Protein 1â€associated glutamate rich protein 1a (Pagr1a) leads to reduced Bmp2 expression and defects in chorion and amnion development. Developmental Dynamics, 2014, 243, 937-947.	0.8	19
36	Molecular basis for histone H3 "K4me3-K9me3/2―methylation pattern readout by Spindlin1. Journal of Biological Chemistry, 2020, 295, 16877-16887.	1.6	15

JI-Eun Lee

#	Article	IF	CITATIONS
37	MLL3/MLL4-Associated PAGR1 Regulates Adipogenesis by Controlling Induction of C/EBP <i>β</i> and C/EBP <i>δ</i> . Molecular and Cellular Biology, 2020, 40, .	1.1	15
38	Down syndrome critical region 1 enhances the proteolytic cleavage of calcineurin. Experimental and Molecular Medicine, 2009, 41, 471.	3.2	13
39	A Mouse Homolog of a Human TP53 Germline Mutation Reveals a Lipolytic Activity of p53. Cell Reports, 2020, 30, 783-792.e5.	2.9	12
40	Loss of Function of the Gene Encoding the Histone Methyltransferase KMT2D Leads to Deregulation of Mitochondrial Respiration. Cells, 2020, 9, 1685.	1.8	10
41	MED1 is a lipogenesis coactivator required for postnatal adipose expansion. Genes and Development, 2021, 35, 713-728.	2.7	9