
Huawu Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/41995/publications.pdf Version: 2024-02-01

Ниллин Сило

#	Article	IF	CITATIONS
1	Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application <i>via</i> an Electrospun Scaffold. ACS Nano, 2017, 11, 5737-5745.	14.6	307
2	Titanium Incorporation into Zrâ€Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrugâ€Resistant Pathogens. Small, 2020, 16, e1906240.	10.0	116
3	Novel Zinc (II)-Mediated Epimerization of 2â€~-Carbonylalkyl-α-C-glycopyranosides to Their β-Anomers. Journal of the American Chemical Society, 2002, 124, 2130-2131.	13.7	56
4	Boronic Acid-Decorated Multivariate Photosensitive Metal–Organic Frameworks for Combating Multi-Drug-Resistant Bacteria. ACS Nano, 2022, 16, 7732-7744.	14.6	42
5	Lathyrol Diterpenes as Modulators of P-Glycoprotein Dependent Multidrug Resistance: Structure–Activity Relationship Studies on <i>Euphorbia</i> Factor L ₃ Derivatives. Journal of Medicinal Chemistry, 2015, 58, 3720-3738.	6.4	37
6	Multivalent Aminosaccharide-Based Gold Nanoparticles as Narrow-Spectrum Antibiotics in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 7725-7730.	8.0	37
7	InCl ₃ Catalyzed Highly Diastereoselective [3 + 2] Cycloaddition of 1,2-Cyclopropanated Sugars with Aldehydes: A Straightforward Synthesis of Persubstituted <i>Bis</i> -Tetrahydrofurans and Perhydrofuro[2,3- <i>b</i>)pyrans. Organic Letters, 2013, 15, 5170-5173.	4.6	35
8	Organic nanostructure-based probes for two-photon imaging of mitochondria and microbes with emission between 430 nm and 640 nm. Nanoscale, 2017, 9, 4770-4776.	5.6	34
9	D-alanyl-D-alanine-Modified Gold Nanoparticles Form a Broad-Spectrum Sensor for Bacteria. Theranostics, 2018, 8, 1449-1457.	10.0	34
10	A mild and environmentally benign method for the synthesis of glycals in PEG-600/H2O. Green Chemistry, 2009, 11, 1124.	9.0	27
11	Oxadiazepine Synthesis by Formal [4+3] Cycloaddition of <i>o</i> â€Chloromethyl Arylsulfonamides with Nitrones Promoted by NaHCO ₃ . Advanced Synthesis and Catalysis, 2018, 360, 3015-3019.	4.3	24
12	Straightforward and highly diastereoselective synthesis of 2,2-di-substituted perhydrofuro[2,3-b]pyran (and furan) derivatives promoted by BiCl3. Chemical Communications, 2013, 49, 7085.	4.1	23
13	Stereospecific [3+2] cycloaddition of 1,2-cyclopropanated sugars and ketones catalyzed by SnCl ₄ : an efficient synthesis of multi-substituted perhydrofuro[2,3-b]furans and perhydrofuro[2,3-b]pyrans. Chemical Communications, 2014, 50, 3505-3508.	4.1	23
14	Investigations on a series of novel ionic liquids containing the [closo-B12Cl12]2â^' dianion. RSC Advances, 2012, 2, 9830.	3.6	21
15	An Effective Method for the Synthesis of 1,3â€Ðihydroâ€2 <i>H</i> â€indazoles via Nâ€N Bond Formation. Advanced Synthesis and Catalysis, 2019, 361, 5552-5557.	4.3	19
16	PEG 400 promoted nucleophilic substitution reaction of halides into organic azides under mild conditions. Green Chemistry Letters and Reviews, 2011, 4, 281-287.	4.7	18
17	Zn(OTf) ₂ promoted rearrangement of 1,2-cyclopropanated sugars with amines: a convenient method for the synthesis of 3-polyhydroxyalkyl-substituted pyrrole derivatives. Organic and Biomolecular Chemistry, 2015, 13, 10865-10873.	2.8	18
18	A Novel and Highly Stereoselective Synthesis of 2-Substituted Perhydrofuro[2,3-b]pyran Derivatives. Organic Letters, 2011, 13, 4276-4279.	4.6	16

Ниаwu Shao

#	Article	IF	CITATIONS
19	A facile method for the preparation of sugar orthoesters promoted by anhydrous sodium bicarbonate. Canadian Journal of Chemistry, 2009, 87, 1733-1737.	1.1	15
20	Nanoscale Metal–Organic Frameworks That are Both Fluorescent and Hollow for Self-Indicating Drug Delivery. ACS Applied Materials & Interfaces, 2021, 13, 18554-18562.	8.0	15
21	Simple and Efficient Method for <i>N</i> -Boc Protection of Amines Using PEG-400 as a Reaction Medium Under Mild Conditions. Synthetic Communications, 2012, 42, 25-32.	2.1	14
22	An efficient and facile strategy for trifluoromethylation and perfluoroalkylation of isoquinolines and heteroarenes. Chemical Communications, 2020, 56, 7813-7816.	4.1	12
23	Rapid Oxidation Indoles into 2â€Oxindoles Mediated by PIFA in Combination with <i>n</i> â€Bu ₄ NCl â< H ₂ O. Advanced Synthesis and Catalysis, 2021, 363, 35	53 ⁴²⁻³ 3538.	12
24	Convenient synthesis of sulfonyl azides using PEG-400 as an efficient and eco-friendly reaction medium. Green Chemistry Letters and Reviews, 2013, 6, 222-227.	4.7	10
25	Methanesulfonicâ€Acidâ€Catalysed Ring Opening and Glycosylation of 1,2â€(Acetylcyclopropane)â€Annulated <scp>D</scp> â€Lyxofuranose. European Journal of Organic Chemistry, 2014, 2014, 4592-4599.	2.4	10
26	Stereoselective Synthesis of a Series of New <i>N</i> â€Alkylâ€3â€hydroxypiperidine Derivatives Containing a Hemiketal. European Journal of Organic Chemistry, 2011, 2011, 4834-4840.	2.4	9
27	Synthesis of N-substituted iminosugars from 2′-carbonyl-C-glycofuranosides. Carbohydrate Research, 2009, 344, 2454-2460.	2.3	7
28	A Rapid Synthesis of Pyranoid Glycals Promoted by <i>β</i> yclodextrin and Ultrasound. Chinese Journal of Chemistry, 2011, 29, 1434-1440.	4.9	7
29	Environmentally Benign Synthesis of Sugar Orthoesters Promoted by Anhydrous Sodium Acetate and Ultrasound. Chinese Journal of Chemistry, 2012, 30, 627-633.	4.9	6
30	A facile method for the synthesis of fused perhydropyrano[2,3 <i>-b</i>]pyrans promoted by Yb(OTf) ₃ . Chemical Communications, 2018, 54, 3763-3766.	4.1	5
31	Strategy to Construct 1,2,3â€Triazoles by K ₂ CO ₃ â€Mediated [4+1] Annulation Reactions of <i>N</i> â€Acetyl Hydrazones with Bifunctional Amino Reagents. Advanced Synthesis and Catalysis, 2021, 363, 459-463.	4.3	5
32	An Efficient and Simple Method for Stereoselective Synthesis of <i>N</i> ubstituted Iminosugars from <i>D</i> â€Xylose Derivative. Chinese Journal of Chemistry, 2014, 32, 361-364.	4.9	4
33	Direct and highly stereoselective synthesis of quinolizidine iminosugars promoted by l-proline-Et3N. Organic and Biomolecular Chemistry, 2018, 16, 9230-9236.	2.8	3
34	Rhopeptin A: First Cyclopeptide Isolated from <i>Rhodobryum giganteum</i> . Helvetica Chimica Acta, 2013, 96, 114-118.	1.6	2
35	Synthesis, Characterisation and Magnetic Behaviour of Ionic Metalloporphyrins: Metal–Tetrakis(N-Octyl-4-Pyridinium)–Porphyrins with Tetrabromoferrate(III) Anions. Journal of Chemical Research, 2013, 37, 445-450.	1.3	1
36	Synthesis of 2,2â€Disubstituted Perhydrofuro[2,3â€b]â€pyran Derivatives containing Indole via BF3 Et2O. Asian Journal of Organic Chemistry, 0, , .	2.7	0