Devin Chandler-Militello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4199422/publications.pdf

Version: 2024-02-01

12 papers

1,321 citations

759233 12 h-index 1199594 12 g-index

12 all docs

12 docs citations

times ranked

12

2684 citing authors

#	Article	IF	CITATIONS
1	Cell-intrinsic glial pathology is conserved across human and murine models of Huntington's disease. Cell Reports, 2021, 36, 109308.	6.4	28
2	Direct Reprogramming of Human Fetal- and Stem Cell-Derived Glial Progenitor Cells into Midbrain Dopaminergic Neurons. Stem Cell Reports, 2020, 15, 869-882.	4.8	18
3	Human Glial Progenitor Cells Effectively Remyelinate the Demyelinated Adult Brain. Cell Reports, 2020, 31, 107658.	6.4	27
4	Dysregulated Glial Differentiation in Schizophrenia May Be Relieved by Suppression of SMAD4- and REST-Dependent Signaling. Cell Reports, 2019, 27, 3832-3843.e6.	6.4	32
5	Human ESC-Derived Chimeric Mouse Models of Huntington's Disease Reveal Cell-Intrinsic Defects in Glial Progenitor Cell Differentiation. Cell Stem Cell, 2019, 24, 107-122.e7.	11.1	75
6	Fluorescent Ca $\langle \sup \rangle 2 + \langle \sup \rangle$ indicators directly inhibit the Na,K-ATPase and disrupt cellular functions. Science Signaling, 2018, 11, .	3.6	81
7	Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell, 2017, 21, 195-208.e6.	11.1	204
8	Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nature Communications, 2016, 7, 11758.	12.8	148
9	A Competitive Advantage by Neonatally Engrafted Human Glial Progenitors Yields Mice Whose Brains Are Chimeric for Human Glia. Journal of Neuroscience, 2014, 34, 16153-16161.	3.6	115
10	Transcriptional Differences between Normal and Glioma-Derived Glial Progenitor Cells Identify a Core Set of Dysregulated Genes. Cell Reports, 2013, 3, 2127-2141.	6.4	70
11	Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination. Cell Stem Cell, 2013, 12, 252-264.	11.1	500
12	Retrovirally mediated telomerase immortalization of neural progenitor cells. Nature Protocols, 2007, 2, 2815-2825.	12.0	23