Weisen Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4199321/publications.pdf Version: 2024-02-01

WEISEN SHEN

#	Article	IF	CITATIONS
1	Crustal and uppermost mantle structure beneath the United States. Journal of Geophysical Research: Solid Earth, 2016, 121, 4306-4342.	1.4	282
2	A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophysical Journal International, 2016, 206, 954-979.	1.0	260
3	A synoptic view of the distribution and connectivity of the midâ€crustal low velocity zone beneath Tibet. Journal of Geophysical Research, 2012, 117, .	3.3	214
4	Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophysical Journal International, 2013, 192, 807-836.	1.0	202
5	A 3â€Ð model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research: Solid Earth, 2013, 118, 262-276.	1.4	189
6	The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophysical Journal International, 2012, 189, 1565-1583.	1.0	166
7	Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature, 2018, 563, 389-392.	13.7	141
8	Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. Journal of Geophysical Research, 2011, 116, .	3.3	134
9	Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 2013, 118, 4226-4252.	1.4	126
10	Ambient noise tomography with a large seismic array. Comptes Rendus - Geoscience, 2011, 343, 558-570.	0.4	105
11	The Crust and Upper Mantle Structure of Central and West Antarctica From Bayesian Inversion of Rayleigh Wave and Receiver Functions. Journal of Geophysical Research: Solid Earth, 2018, 123, 7824-7849.	1.4	78
12	A Geothermal Heat Flux Map of Antarctica Empirically Constrained by Seismic Structure. Geophysical Research Letters, 2020, 47, e2020GL086955.	1.5	51
13	USTClitho2.0: Updated Unified Seismic Tomography Models for Continental China Lithosphere from Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data. Seismological Research Letters, 2022, 93, 201-215.	0.8	51
14	A one-dimensional seismic model for Uturuncu volcano, Bolivia, and its impact on full moment tensor inversions. , 2017, 13, 1-10.		47
15	Crustal and uppermost mantle structure in the central U.S. encompassing the Midcontinent Rift. Journal of Geophysical Research: Solid Earth, 2013, 118, 4325-4344.	1.4	44
16	Seismic evidence for lithospheric foundering beneath the southern Transantarctic Mountains, Antarctica. Geology, 2018, 46, 71-74.	2.0	44
17	Direct Inversion for Threeâ€Dimensional Shear Wave Speed Azimuthal Anisotropy Based on Surface Wave Ray Tracing: Methodology and Application to Yunnan, Southwest China. Journal of Geophysical Research: Solid Earth, 2019, 124, 11394-11413.	1.4	43
18	Shear Velocity Model of Alaska Via Joint Inversion of Rayleigh Wave Ellipticity, Phase Velocities, and Receiver Functions Across the Alaska Transportable Array. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018582.	1.4	41

WEISEN SHEN

#	Article	IF	CITATIONS
19	Tomography of Southern California Via Bayesian Joint Inversion of Rayleigh Wave Ellipticity and Phase Velocity From Ambient Noise Crossâ€Correlations. Journal of Geophysical Research: Solid Earth, 2018, 123, 9933-9949.	1.4	40
20	Origins of topography in the western U.S.: Mapping crustal and upper mantle density variations using a uniform seismic velocity model. Journal of Geophysical Research: Solid Earth, 2014, 119, 2375-2396.	1.4	38
21	On the reliability of attenuation measurements from ambient noise cross-correlations. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	33
22	Crustal layering in northeastern Tibet: a case study based on joint inversion of receiver functions and surface wave dispersion. Geophysical Journal International, 2015, 203, 692-706.	1.0	33
23	Seismic evidence for lithospheric modification associated with intracontinental volcanism in Northeastern China. Geophysical Journal International, 2016, 204, 215-235.	1.0	33
24	Crustal and uppermost mantle shear velocity structure adjacent to the Juan de Fuca Ridge from ambient seismic noise. Geochemistry, Geophysics, Geosystems, 2013, 14, 3221-3233.	1.0	25
25	The distribution and composition of highâ€velocity lower crust across the continental U.S.: Comparison of seismic and xenolith data and implications for lithospheric dynamics and history. Tectonics, 2017, 36, 1455-1496.	1.3	25
26	Surface wave tomography on a large-scale seismic array combining ambient noise and teleseismic earthquake data. Earthquake Science, 2011, 24, 55-64.	0.4	22
27	Upper mantle structure of the <scp>T</scp> ongaâ€ <scp>L</scp> auâ€ <scp>F</scp> iji region from <scp>R</scp> ayleigh wave tomography. Geochemistry, Geophysics, Geosystems, 2016, 17, 4705-4724.	1.0	15
28	Crustal Anisotropy Across Eastern Tibet and Surroundings Modeled as a Depth-Dependent Tilted Hexagonally Symmetric Medium. Geophysical Journal International, 0, , ggx004.	1.0	15
29	The seismic structure of the Antarctic upper mantle. Geological Society Memoir, 2023, 56, 195-212.	0.9	15
30	High-resolution Vs tomography of South China by joint inversion of body wave and surface wave data. Tectonophysics, 2022, 824, 229228.	0.9	15
31	Threeâ€Dimensional Crustal Structures of the Shanxi Rift Constructed by Rayleigh Wave Dispersion Curves and Ellipticity: Implication for Sedimentation, Intraplate Volcanism, and Seismicity. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020146.	1.4	8
32	Radial Anisotropy and Sediment Thickness of West and Central Antarctica Estimated From Rayleigh and Love Wave Velocities. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
33	Crustal thickness beneath the Tanlu fault zone and its tectonic significance based on two-layer H-κ stacking. Earthquake Science, 2021, 34, 47-63.	0.4	5
34	Repeating Nontectonic Seasonal Stress Changes and a Possible Triggering Mechanism of the 2019 Ridgecrest Earthquake Sequence in California. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022188.	1.4	3