
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/419932/publications.pdf Version: 2024-02-01

HONG MENC

#	Article	IF	CITATIONS
1	Light-Emitting Polythiophenes. Advanced Materials, 2005, 17, 2281-2305.	21.0	858
2	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie - International Edition, 2018, 57, 11316-11320.	13.8	314
3	Aluminumâ€Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight. Advanced Science, 2017, 4, 1700335.	11.2	303
4	Conductance of Small Molecular Junctions. Physical Review Letters, 2002, 88, 226801.	7.8	298
5	High-Performance, Stable Organic Thin-Film Field-Effect Transistors Based on Bis-5'-alkylthiophen-2'-yl-2,6-anthracene Semiconductors. Journal of the American Chemical Society, 2005, 127, 2406-2407.	13.7	265
6	Oligofluoreneâ^'Thiophene Derivatives as High-Performance Semiconductors for Organic Thin Film Transistors. Chemistry of Materials, 2003, 15, 1778-1787.	6.7	258
7	Organic Polymeric Electrochromic Devices:Â Polychromism with Very High Coloration Efficiency. Chemistry of Materials, 2004, 16, 574-580.	6.7	230
8	High Field-Effect Mobility Oligofluorene Derivatives with High Environmental Stability. Journal of the American Chemical Society, 2001, 123, 9214-9215.	13.7	206
9	Tetramethylpentacene: Remarkable Absence of Steric Effect on Field Effect Mobility. Advanced Materials, 2003, 15, 1090-1093.	21.0	206
10	Solid-State Synthesis of a Conducting Polythiophene via an Unprecedented Heterocyclic Coupling Reaction. Journal of the American Chemical Society, 2003, 125, 15151-15162.	13.7	196
11	2,6-Bis[2-(4-pentylphenyl)vinyl]anthracene:Â A Stable and High Charge Mobility Organic Semiconductor with Densely Packed Crystal Structure. Journal of the American Chemical Society, 2006, 128, 9304-9305.	13.7	185
12	Self-assembled monolayer organic field-effect transistors. Nature, 2001, 413, 713-716.	27.8	166
13	Photoluminescent Poly(p-phenylenevinylene)s with an Aromatic Oxadiazole Moiety as the Side Chain:Â Synthesis, Electrochemistry, and Spectroscopy Study. Macromolecules, 1999, 32, 4351-4358.	4.8	165
14	Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 2016, 4, 2269-2273.	5.5	155
15	Regioregular Narrowâ€Bandgap nâ€Type Polymers with High Electron Mobility Enabling Highly Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2021, 33, e2102635.	21.0	151
16	Facile Solid-State Synthesis of Highly Conducting Poly(ethylenedioxythiophene). Angewandte Chemie - International Edition, 2003, 42, 658-661.	13.8	147
17	Poor Stability of Li ₂ CO ₃ in the Solid Electrolyte Interphase of a Lithiumâ€Metal Anode Revealed by Cryoâ€Electron Microscopy. Advanced Materials, 2021, 33, e2100404.	21.0	147
18	An Unusual Electrochromic Device Based on a New Low-Bandgap Conjugated Polymer. Advanced Materials, 2003, 15, 146-149.	21.0	146

#	Article	IF	CITATIONS
19	Hexathiapentacene:Â Structure, Molecular Packing, and Thin-Film Transistors. Journal of the American Chemical Society, 2006, 128, 15576-15577.	13.7	136
20	Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers. Langmuir, 2003, 19, 4272-4284.	3.5	132
21	Tuning Redox Behavior and Emissive Wavelength of Conjugated Polymers bypâ^'nDiblock Structures. Journal of the American Chemical Society, 1998, 120, 11808-11809.	13.7	131
22	Flexible Asymmetric Supercapacitors via Spray Coating of a New Electrochromic Donor–Acceptor Polymer. Advanced Energy Materials, 2017, 7, 1601623.	19.5	131
23	Anthracene-based semiconductors for organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 7416-7444.	5.5	129
24	Directly patternable, highly conducting polymers for broad applications in organic electronics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5712-5717.	7.1	127
25	Organic Thin Film Transistors Based on Cyclohexyl-Substituted Organic Semiconductors. Chemistry of Materials, 2005, 17, 3366-3374.	6.7	125
26	Highâ€Performance Organic Singleâ€Crystal Transistors and Digital Inverters of an Anthracene Derivative. Advanced Materials, 2009, 21, 3649-3653.	21.0	125
27	Organic Transistors Based on Di(phenylvinyl)anthracene: Performance and Stability. Advanced Materials, 2007, 19, 3882-3887.	21.0	120
28	Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale, 2020, 12, 2103-2110.	5.6	114
29	Synthesis and Characterization of a Newpâ^'nDiblock Light-Emitting Copolymer. Macromolecules, 1998, 31, 4838-4844.	4.8	111
30	A Highly Stable, New Electrochromic Polymer: Poly(1,4-bis(2-(3′,4′-ethylenedioxy)) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5	i0 302 Td (†
31	A New Blue Light-Emitting Polymer Containing Substituted Thiophene and an Arylene-1,3,4-oxadiazole Moiety. Advanced Materials, 1998, 10, 593-596.	21.0	109
32	Solution-Processable Neutral Green Electrochromic Polymer Containing Thieno[3,2- <i>b</i>]thiophene Derivative as Unconventional Donor Units. Macromolecules, 2016, 49, 7211-7219.	4.8	104
33	Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy and Environmental Science, 0, , .	30.8	102
34	Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H ₂ Syngas Production from Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 11345-11348.	13.8	100
35	A Unique Blend of 2â€Fluorenylâ€2â€anthracene and 2â€Anthrylâ€2â€anthracence Showing White Emission and High Charge Mobility. Angewandte Chemie - International Edition, 2017, 56, 722-727.	13.8	94

36Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nature
Communications, 2021, 12, 3066.12.892

#	Article	IF	CITATIONS
37	A Novel Hybrid‣ayered Organic Phototransistor Enables Efficient Intermolecular Charge Transfer and Carrier Transport for Ultrasensitive Photodetection. Advanced Materials, 2019, 31, e1900763.	21.0	89
38	Electrochromic Smart Windows Can Achieve an Absolute Private State through Thermochromically Engineered Electrolyte. Advanced Energy Materials, 2019, 9, 1900433.	19.5	88
39	A Robust Low Band Cap Processable n-Type Conducting Polymer Based on Poly(isothianaphthene). Macromolecules, 2001, 34, 1810-1816.	4.8	87
40	A Novel Series of pâ^'n Diblock Light-Emitting Copolymers Based on Oligothiophenes and 1,4-Bis(oxadiazolyl)-2,5-dialkyloxybenzene. Macromolecules, 1999, 32, 118-126.	4.8	86
41	Effects of heteroatom substitution in spiro-bifluorene hole transport materials. Chemical Science, 2016, 7, 5007-5012.	7.4	86
42	500 Wh kg ^{â^'1} Class Li Metal Battery Enabled by a Selfâ€Organized Core–Shell Composite Anode. Advanced Materials, 2020, 32, e2004793.	21.0	86
43	Very Stable Low Band Gap Polymer for Charge Storage Purposes and Near-Infrared Applications. Chemistry of Materials, 2003, 15, 4923-4929.	6.7	83
44	Fullâ€Color Micro‣ED Display with CsPbBr ₃ Perovskite and CdSe Quantum Dots as Color Conversion Layers. Advanced Materials Technologies, 2020, 5, 2000251.	5.8	83
45	Graphene Quantum Dots Embedded in Bi ₂ Te ₃ Nanosheets To Enhance Thermoelectric Performance. ACS Applied Materials & Interfaces, 2017, 9, 3677-3685.	8.0	78
46	Self-Regulated Phenomenon of Inorganic Artificial Solid Electrolyte Interphase for Lithium Metal Batteries. Nano Letters, 2020, 20, 4029-4037.	9.1	78
47	Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 10955-10962.	8.0	77
48	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie, 2018, 130, 11486-11490.	2.0	77
49	Facile Synthetic Route to a Novel Electroluminescent Polymerâ`'Poly(p-phenylenevinylene) Containing a Fully Conjugated Aromatic Oxadiazole Side Chain. Macromolecules, 1999, 32, 8841-8847.	4.8	73
50	Additive stabilization of SEI on graphite observed using cryo-electron microscopy. Energy and Environmental Science, 2021, 14, 4882-4889.	30.8	73
51	Field-Effect Modulation of the Conductance of Single Molecules. Science, 2001, 294, 2138-2140.	12.6	72
52	A One-Step Synthesis of a Poly(iptycene) through an Unusual Dielsâ^'Alder Cyclization/Dechlorination of Tetrachloropentacene. Journal of the American Chemical Society, 2003, 125, 10190-10191.	13.7	72
53	Extending the Photovoltaic Response of Perovskite Solar Cells into the Nearâ€Infrared with a Narrowâ€Bandgap Organic Semiconductor. Advanced Materials, 2019, 31, e1904494.	21.0	71
54	Facile synthesis of defect-rich nitrogen and sulfur Co-doped graphene quantum dots as metal-free electrocatalyst for the oxygen reduction reaction. Journal of Alloys and Compounds, 2019, 792, 844-850.	5.5	71

#	Article	IF	CITATIONS
55	A Unique Blend of 2â€Fluorenylâ€2â€anthracene and 2â€Anthrylâ€2â€anthracence Showing White Emission and High Charge Mobility. Angewandte Chemie, 2017, 129, 740-745.	2.0	70
56	A Benzo[1,2â€ <i>b</i> :4,5â€ <i>c</i> ′]Dithiopheneâ€4,8â€Dioneâ€Based Polymer Donor Achieving an Efficier 16%. Advanced Materials, 2020, 32, e1907059.	cy Over 21.0	70
57	Evolution of white organic light-emitting devices: from academic research to lighting and display applications. Materials Chemistry Frontiers, 2019, 3, 970-1031.	5.9	67
58	New Series of Blue-Light-Emitting Polymers Constituted of 3-Alkylthiophenes and 1,4-Di(1,3,4-oxadiazolyl)phenylene. Chemistry of Materials, 1998, 10, 3340-3345.	6.7	63
59	Novel Photoluminescent Polymers Containing Oligothiophene andm-Phenylene-1,3,4-oxadiazole Moieties:Â Synthesis and Spectroscopic and Electrochemical Studies. Journal of Organic Chemistry, 2000, 65, 3894-3901.	3.2	60
60	Recent advances in high-performance organic solar cells enabled by acceptor–donor–acceptor–donor–acceptor (A–DA′D–A) type acceptors. Materials Chemistry Frontiers, 2020, 4, 3487-3504.	5.9	60
61	3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing. Nanotechnology, 2018, 29, 185501.	2.6	57
62	3D Printing of Freeâ€Standing Stretchable Electrodes with Tunable Structure and Stretchability. Advanced Engineering Materials, 2017, 19, 1700341.	3.5	55
63	Chlorination of Side Chains: A Strategy for Achieving a High Open Circuit Voltage Over 1.0 V in Benzo[1,2-b:4,5-bâ€2]dithiophene-Based Non-Fullerene Solar Cells. ACS Applied Energy Materials, 2018, 1, 2365-2372.	5.1	54
64	Interfacial modification for heightening the interaction between PEDOT and substrate towards enhanced flexible solid supercapacitor performance. Chemical Engineering Journal, 2020, 379, 122326.	12.7	52
65	Environmentally stable light emitting field effect transistors based on 2-(4-pentylstyryl)tetracene. Journal of Materials Chemistry, 2008, 18, 158-161.	6.7	49
66	Polarâ€Electrodeâ€Bridged Electroluminescent Displays: 2D Sensors Remotely Communicating Optically. Advanced Materials, 2017, 29, 1703552.	21.0	49
67	Boosting Efficiency and Stability of Organic Solar Cells Using Ultralow-Cost BiOCl Nanoplates as Hole Transporting Layers. ACS Applied Materials & Interfaces, 2019, 11, 33505-33514.	8.0	49
68	1,5-, 2,6- and 9,10-distyrylanthracenes as luminescent organic semiconductors. Journal of Materials Chemistry C, 2013, 1, 2817.	5.5	48
69	Highly Simplified Reddish Orange Phosphorescent Organic Light-Emitting Diodes Incorporating a Novel Carrier- and Exciton-Confining Spiro-Exciplex-Forming Host for Reduced Efficiency Roll-off. ACS Applied Materials & Interfaces, 2017, 9, 2701-2710.	8.0	48
70	Thieno[3,2- <i>b</i>]thiophene-based conjugated copolymers for solution-processable neutral black electrochromism. Polymer Chemistry, 2018, 9, 5608-5616.	3.9	46
71	High Performance OTFTs Fabricated Using a Calamitic Liquid Crystalline Material of 2â€(4â€Đodecyl) Tj ETQq1 1 ().784314 5.1	rgBT /Over
72	Reduced interface losses in inverted perovskite solar cells by using a simple dual-functional	16.0	43

phenanthroline derivative. Nano Energy, 2018, 43, 72-80.

16.043

#	Article	IF	CITATIONS
73	A Stretchable Alternating Current Electroluminescent Fiber. Materials, 2018, 11, 184.	2.9	43
74	Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics. Journal of Materials Chemistry A, 2018, 6, 2942-2951.	10.3	42
75	Highly transmissive blue electrochromic polymers based on thieno[3,2-b]thiophene. Polymer Chemistry, 2016, 7, 5351-5356.	3.9	41
76	Mechanical simulation of foldable AMOLED panel with a module structure. Organic Electronics, 2019, 65, 185-192.	2.6	41
77	Structure Property Relationships:  Asymmetric Oligofluoreneâ^'Thiophene Molecules for Organic TFTs. Chemistry of Materials, 2006, 18, 6250-6257.	6.7	40
78	A non-fullerene small molecule processed with green solvent as an electron transporting material for high efficiency p-i-n perovskite solar cells. Organic Electronics, 2018, 52, 200-205.	2.6	40
79	Effects of <i>p</i> -(Trifluoromethoxy)benzyl and <i>p</i> -(Trifluoromethoxy)phenyl Molecular Architecture on the Performance of Naphthalene Tetracarboxylic Diimide-Based Air-Stable n-Type Semiconductors. ACS Applied Materials & Interfaces, 2016, 8, 18277-18283.	8.0	39
80	Multichloro-Substitution Strategy: Facing Low Photon Energy Loss in Nonfullerene Solar Cells. ACS Applied Energy Materials, 2018, 1, 6549-6559.	5.1	39
81	Structure and Bonding Issues at the Interface between Gold and Self-Assembled Conjugated Dithiol Monolayers. Langmuir, 2005, 21, 8751-8757.	3.5	38
82	Wide color-range tunable and low roll-off fluorescent organic light emitting devices based on double undoped ultrathin emitters. Organic Electronics, 2016, 37, 93-99.	2.6	38
83	Ultrathin and Ultrasensitive Direct Xâ€ray Detector Based on Heterojunction Phototransistors. Advanced Materials, 2021, 33, e2101717.	21.0	38
84	Organic single-crystal complementary inverter. Applied Physics Letters, 2006, 89, 222111.	3.3	36
85	Chargeâ€Storage Aromatic Amino Compounds for Nonvolatile Organic Transistor Memory Devices. Small, 2018, 14, e1800756.	10.0	36
86	Chlorination strategy on polymer donors toward efficient solar conversions. Journal of Energy Chemistry, 2019, 39, 208-216.	12.9	36
87	Efficient Charge Injection in Organic Fieldâ€Effect Transistors Enabled by Lowâ€Temperature Atomic Layer Deposition of Ultrathin VO _x Interlayer. Advanced Functional Materials, 2016, 26, 4456-4463.	14.9	35
88	Highly Efficient Flexible Organic Light Emitting Transistor Based on Highâ€∢i>k Polymer Gate Dielectric. Advanced Optical Materials, 2020, 8, 1901651.	7.3	35
89	Influence of heteroatoms on the charge mobility of anthracene derivatives. Journal of Materials Chemistry C, 2016, 4, 3517-3522.	5.5	34
90	Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor. ACS Applied Materials & Interfaces, 2017, 9, 7305-7314.	8.0	34

#	Article	IF	CITATIONS
91	A thermally stable anthracene derivative for application in organic thin film transistors. Organic Electronics, 2017, 43, 105-111.	2.6	34
92	Highly responsive phototransistors based on 2,6-bis(4-methoxyphenyl)anthracene single crystal. Journal of Materials Chemistry C, 2017, 5, 5304-5309.	5.5	34
93	Simplified efficient warm white tandem organic light-emitting devices by ultrathin emitters using energy transfer from exciplexes. Organic Electronics, 2018, 63, 369-375.	2.6	34
94	Trifluoromethyl Group-Modified Non-Fullerene Acceptor toward Improved Power Conversion Efficiency over 13% in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 11543-11550.	8.0	34
95	Design Strategy for Efficient Solution-Processable Red Electrochromic Polymers Based on Unconventional 3,6-Bis(dodecyloxy)thieno[3,2- <i>b</i>]thiophene Building Blocks. Macromolecules, 2018, 51, 7853-7862.	4.8	33
96	A feasible strategy for the fabrication of camouflage electrochromic fabric and unconventional devices. Electrochemistry Communications, 2019, 102, 31-36.	4.7	33
97	Exploring the electrochromic properties of poly(thieno[3,2-b]thiophene)s decorated with electron-deficient side groups. Polymer Chemistry, 2017, 8, 769-784.	3.9	32
98	Versatile functionalization of trifluoromethyl based deep blue thermally activated delayed fluorescence materials for organic light emitting diodes. New Journal of Chemistry, 2018, 42, 4317-4323.	2.8	32
99	Development of fullerenes and their derivatives as semiconductors in field-effect transistors: exploring the molecular design. Journal of Materials Chemistry C, 2018, 6, 3514-3537.	5.5	31
100	Multicolored Cathodically Coloring Electrochromism and Electrofluorochromism in Regioisomeric Star-Shaped Carbazole Dibenzofurans. ACS Applied Materials & Interfaces, 2020, 12, 24156-24164.	8.0	31
101	Synthesis and electrochemical characterization of a new polymer constituted of alternating carbazole and oxadiazole moieties. Synthetic Metals, 1999, 100, 297-301.	3.9	29
102	A "chain–lock―strategy to construct a conjugated copolymer network for supercapacitor applications. Journal of Materials Chemistry A, 2019, 7, 116-123.	10.3	29
103	Gaining Insight into the Effect of Organic Interface Layer on Suppressing Ion Migration Induced Interfacial Degradation in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000837.	14.9	29
104	Synthesis, spectroscopy and electrochemistry study on a novel di-silyl substituted poly(p-phenylenevinylene). Synthetic Metals, 1999, 105, 85-89.	3.9	26
105	Molecular phase engineering of organic semiconductors based on a [1]benzothieno[3,2-b][1]benzothiophene core. RSC Advances, 2016, 6, 95149-95155.	3.6	26
106	Unravelling Alkaliâ€Metalâ€Assisted Domain Distribution of Quasiâ€2D Perovskites for Cascade Energy Transfer toward Efficient Blue Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2200393.	11.2	26
107	Gated molecular devices using self-assembled monolayers. Nanotechnology, 2003, 14, 254-257.	2.6	25
108	Spectroscopic and Electrochemical Study of a Novel Blue Electroluminescent p-n Diblock Conjugated Copolymer. Journal of Physical Chemistry B, 1999, 103, 6429-6433.	2.6	24

#	Article	IF	CITATIONS
109	Spectroscopic properties of PEDOTEHIITN. Synthetic Metals, 2003, 137, 1435-1436.	3.9	24
110	An efficient and thickness insensitive cathode interface material for high performance inverted perovskite solar cells with 17.27% efficiency. Journal of Materials Chemistry C, 2017, 5, 5949-5955.	5.5	24
111	Alkoxy substituted [1]benzothieno[3,2-b][1]benzothiophene derivative with improved performance in organic thin film transistors. Organic Electronics, 2018, 56, 68-75.	2.6	24
112	Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode: Efficient, Scalable, and Recyclable. Nano-Micro Letters, 2019, 11, 41.	27.0	24
113	Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions. RSC Advances, 2017, 7, 17387-17397.	3.6	23
114	Boosting Efficiency and Curtailing the Efficiency Roll-Off in Green Perovskite Light-Emitting Diodes via Incorporating Ytterbium as Cathode Interface Layer. ACS Applied Materials & Interfaces, 2020, 12, 18761-18768.	8.0	23
115	Multifunctional Benzo[4,5]thieno[3,2- <i>b</i>]benzofuran Derivative with High Mobility and Luminescent Properties. ACS Applied Materials & Interfaces, 2021, 13, 12250-12258.	8.0	23
116	Synthesis of 1,4-bis(1,3,4-oxadiazol-2-yl)-2,5-dialkoxybenzene–oligothiophene copolymers with different emissive colors: synthetically tuning the photoluminescence of conjugated polymers. Chemical Communications, 1998, , 1957-1958.	4.1	22
117	Synthesis and characterization of a novel blue electroluminescent polymer constituted of alternating carbazole and aromatic oxadiazole units. Physical Chemistry Chemical Physics, 1999, 1, 3123-3127.	2.8	22
118	Investigating the single crystal OFET and photo-responsive characteristics based on an anthracene linked benzo[b]benzo[4,5]thieno[2,3-d]thiophene semiconductor. Organic Electronics, 2019, 72, 1-5.	2.6	22
119	Highly fluorescent anthracene derivative as a non-fullerene acceptor in OSCs with small non-radiative energy loss of 0.22ÂeV and high PCEs of over 13%. Journal of Materials Chemistry A, 2019, 7, 10212-10216.	10.3	22
120	Overcoming the trade-off between Voc and Jsc: Asymmetric chloro-substituted two-dimensional benzo[1,2-b:4,5-b′]dithiophene-based polymer solar cells. Dyes and Pigments, 2019, 162, 746-754.	3.7	22
121	Enhanced Photovoltaic Performance by Synergistic Effect of Chlorination and Selenophene π-Bridge. Macromolecules, 2020, 53, 2893-2901.	4.8	22
122	Molecular engineering tuning optoelectronic properties of thieno[3,2-b]thiophenes-based electrochromic polymers. Science China Chemistry, 2017, 60, 63-76.	8.2	21
123	Traps induced memory effect in rubrene single crystal phototransistor. Applied Physics Letters, 2018, 113, .	3.3	21
124	Multi-colour electrochromic materials based on polyaromatic esters with low driving voltage. Journal of Materials Chemistry C, 2019, 7, 9467-9473.	5.5	21
125	Highly efficient thermally activated delayed fluorescence yellow organic light-emitting diodes with a low efficiency roll-off. Journal of Materials Chemistry C, 2019, 7, 8063-8069.	5.5	21
126	Vacuumâ€Drying Processed Micrometerâ€Thick Stable CsPbBr 3 Perovskite Films with Efficient Blueâ€Toâ€Green Photoconversion. Small, 2019, 15, 1901954.	10.0	21

#	Article	IF	CITATIONS
127	Anthracene derivative based multifunctional liquid crystal materials for optoelectronic devices. Materials Chemistry Frontiers, 2020, 4, 3546-3555.	5.9	21
128	Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication. Frontiers of Physics, 2021, 16, 1.	5.0	21
129	Three-phase electric power driven electroluminescent devices. Nature Communications, 2021, 12, 54.	12.8	21
130	Asymmetrically Enhanced Coplanarâ€Electrode Electroluminescence for Information Encryption and Ultrahighly StretchableÂDisplays. Advanced Materials, 2022, 34, .	21.0	21
131	Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer. Organic Electronics, 2017, 45, 97-103.	2.6	20
132	Hydroxyl-Terminated CuInS ₂ -Based Quantum Dots: Potential Cathode Interfacial Modifiers for Efficient Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7362-7367.	8.0	20
133	Performance Enhancement and Bending Restoration for Flexible Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Low-Temperature Supercritical Dehydration Treatment. ACS Applied Materials & Interfaces, 2021, 13, 8584-8594.	8.0	20
134	Fine Emission Tuning from Near-Ultraviolet to Saturated Blue with Rationally Designed Carbene-Based [3 + 2 + 1] Iridium(III) Complexes. ACS Applied Materials & Interfaces, 2022, 14, 1546-1556.	8.0	20
135	A Redoxâ€Dependent Electrochromic Material: <i>Tetri</i> â€EDOT Substituted Thieno[3,2â€ <i>b</i>]thiophene. Macromolecular Rapid Communications, 2016, 37, 1344-1351.	3.9	19
136	From Semi- to Full-Two-Dimensional Conjugated Side-Chain Design: A Way toward Comprehensive Solar Energy Absorption. Macromolecules, 2017, 50, 9617-9625.	4.8	19
137	Triphenylphosphine-based functional porous polymer as an efficient heterogeneous catalyst for the synthesis of cyclic carbonates from CO2. Nanoscale Research Letters, 2017, 12, 609.	5.7	19
138	Chlorination of Conjugated Side Chains To Enhance Intermolecular Interactions for Elevated Solar Conversion. Macromolecules, 2020, 53, 165-173.	4.8	19
139	A smart polymer with a high sensitivity to temperature and humidity based on polyacrylamide hydrogel doped with polyiodide. Journal of Materials Chemistry C, 2016, 4, 11055-11058.	5.5	18
140	In-plane isotropic charge transport characteristics of single-crystal FETs with high mobility based on 2,6-bis(4-methoxyphenyl)anthracene: experimental cum theoretical assessment. Journal of Materials Chemistry C, 2017, 5, 370-375.	5.5	18
141	Low-Voltage, High-Performance Flexible Organic Field-Effect Transistors Based on Ultrathin Single-Crystal Microribbons. ACS Applied Materials & Interfaces, 2019, 11, 34188-34195.	8.0	18
142	A series of porphyrins as interfacial materials for inverted perovskite solar cells. Organic Electronics, 2020, 77, 105522.	2.6	18
143	Chlorinated Benzo[1,2â€b:4,5â€c′]dithiopheneâ€4,8â€dione Polymer Donor: A Small Atom Makes a Big Differe Advanced Science, 2021, 8, 2003641.	ence. 11.2	18
144	Facile Solid-State Synthesis of Highly Conducting Poly(ethylenedioxythiophene). Angewandte Chemie, 2003, 115, 682-685.	2.0	17

#	Article	IF	CITATIONS
145	Effects of a highly lipophilic substituent on the environmental stability of naphthalene tetracarboxylic diimide-based n-channel thin-film transistors. Journal of Materials Chemistry C, 2017, 5, 848-853.	5.5	17
146	A new partial volume segmentation approach to extract bladder wall for computer-aided detection in virtual cystoscopy. , 2004, , .		16
147	Design and characterization of methoxy modified organic semiconductors based on phenyl[1]benzothieno[3,2-b][1]benzothiophene. RSC Advances, 2017, 7, 5514-5518.	3.6	16
148	Effect of Alkyl Chain Length on Charge Transport Property of Anthracene-Based Organic Semiconductors. ACS Applied Materials & Interfaces, 2021, 13, 989-998.	8.0	16
149	A Wide Band Gap Naphthalene Semiconductor for Thinâ€Film Transistors. Advanced Electronic Materials, 2017, 3, 1600556.	5.1	15
150	Intrinsic charge carrier mobility in single-crystal OFET by "fast trapping vs. slow detrapping―model. Organic Electronics, 2018, 54, 237-244.	2.6	15
151	Sulphur poisoning of solid oxide electrolysis cell anodes. Electrochimica Acta, 2018, 269, 188-195.	5.2	15
152	Bis(diphenylamino)-benzo[4,5]thieno[3,2-b]benzofuran as hole transport material for highly efficient RGB organic light-emitting diodes with low efficiency roll-off and long lifetime. Organic Electronics, 2020, 84, 105793.	2.6	15
153	Diphenyl sulfone based multicolored cathodically coloring electrochromic materials with high contrast. Organic Electronics, 2020, 83, 105741.	2.6	15
154	Carbon nanodots enhanced performance of Cs0.15FA0.85PbI3 perovskite solar cells. Nano Research, 2021, 14, 2294-2300.	10.4	15
155	Quasiâ€2D CsPbBr <i>_x</i> l _{3â^²} <i>_x</i> Composite Thin Films for Efficient and Stable Red Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2101419.	7.3	15
156	Fabricating of high-performance functional graphene fibers for micro-capacitive energy storage. Scientific Reports, 2016, 6, 29534.	3.3	14
157	Unlocking the potential of diketopyrrolopyrrole-based solar cells by a pre-solvent annealing method in all-solution processing. RSC Advances, 2016, 6, 53587-53595.	3.6	14
158	Lead Zirconate Titanate (a piezoelectric ceramic)-Based thermal and tactile bimodal organic transistor sensors. Organic Electronics, 2020, 80, 105673.	2.6	14
159	Recent Advances in Multiâ€Layer Lightâ€Emitting Heterostructure Transistors. Small, 2021, 17, e2007661.	10.0	14
160	Synthesis, characterization and electrical conductivity of a novel conjugated Schiff base macrocycle containing 1,3,4-oxadiazole ring. Synthetic Metals, 1998, 93, 181-185.	3.9	13
161	Phenyl substitution in tetracene: a promising strategy to boost charge mobility in thin film transistors. Journal of Materials Chemistry C, 2017, 5, 2852-2858.	5.5	13
162	2D and 3D Crystal Formation of 2,6â€Bis[4â€ethylphenyl]anthracene with Isotropic High Charge arrier Mobility. Advanced Electronic Materials, 2017, 3, 1700282.	5.1	13

#	Article	IF	CITATIONS
163	Investigating the Thermal Stability of Organic Thinâ€Film Transistors and Phototransistors Based on [1]â€Benzothienoâ€{3,2â€ <i>b</i>]â€{1]â€benzothiophene Dimeric Derivatives. Chemistry - A European Journal, 2018, 24, 16595-16602.	3.3	13
164	lsothianaphthene diimide: an air-stable n-type semiconductor. Science China Chemistry, 2019, 62, 1360-1364.	8.2	13
165	Polysiloxane–poly(vinyl alcohol) composite dielectrics for high-efficiency low voltage organic thin film transistors. Journal of Materials Chemistry C, 2019, 7, 4879-4886.	5.5	13
166	Humidity Sensor Based on Orange Dye and Graphene Solid Electrolyte Cells. Russian Journal of Electrochemistry, 2019, 55, 1391-1396.	0.9	13
167	The Effect of Oligo(Ethylene Oxide) Side Chains: A Strategy to Improve Contrast and Switching Speed in Electrochromic Polymers. ChemPhysChem, 2020, 21, 321-327.	2.1	13
168	Thieno[3,2-b]thiophene based electrochromic polymers: experimental cum theoretical appraisal of the EDOT position. RSC Advances, 2016, 6, 75522-75529.	3.6	12
169	A novel A-D-A small molecule with 1,8-naphthalimide as a potential non-fullerene acceptor for solution processable solar cells. Dyes and Pigments, 2017, 142, 39-50.	3.7	12
170	Recombination Strategy for Processable Ambipolar Electroactive Polymers in Pseudocapacitors. Macromolecules, 2018, 51, 7350-7359.	4.8	12
171	Host-Free Deep-Blue Organic Light-Emitting Transistors Based on a Novel Fluorescent Emitter. ACS Applied Materials & Interfaces, 2020, 12, 40558-40565.	8.0	12
172	Ï€â€Extended Spiro Coreâ€Based Nonfullerene Electronâ€Transporting Material for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2001073.	14.9	12
173	Fluorination of a polymer donor through the trifluoromethyl group for high-performance polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 12149-12155.	10.3	12
174	Novel spiro[fluorene-9,9′-xanthene]-based hole transport layers for red and green PHOLED devices with high efficiency and low efficiency roll-off. Journal of Materials Chemistry C, 2021, 9, 3247-3256.	5.5	12
175	Hysteresis-Free, High-Performance Polymer-Dielectric Organic Field-Effect Transistors Enabled by Supercritical Fluid. Research, 2020, 2020, 6587102.	5.7	12
176	Highly Efficient Phosphorescent Blue-Emitting [3+2+1] Coordinated Iridium (III) Complex for OLED Application. Frontiers in Chemistry, 2021, 9, 758357.	3.6	12
177	Constructing Binder―and Carbon Additiveâ€Free Organosulfur Cathodes Based on Conducting Thiolâ€Polymers through Electropolymerization for Lithiumâ€Sulfur Batteries. ChemSusChem, 2022, 15, .	6.8	12
178	Self-Assembled Monolayer Transistors. Advanced Materials, 2002, 14, 323-326.	21.0	11
179	An unusual photoconductive property of polyiodide and enhancement by catenating with 3-thiophenemethylamine salt. Chemical Communications, 2017, 53, 432-435.	4.1	11
180	Highly simplified blue phosphorescent organic light-emitting diodes incorporating exciplex-forming co-host assisting energy transfer. Journal of Luminescence, 2019, 206, 554-559.	3.1	11

#	Article	IF	CITATIONS
181	Dibenzofuran-based iridium complexes as green emitters: Realizing PhOLEDs with high power efficiency and extremely low efficiency roll-off. Dyes and Pigments, 2020, 173, 107990.	3.7	11
182	Evaluation of defects and current kinetics for aging analysis of PEDOT:PSS based supercapacitors. Journal of Energy Storage, 2020, 28, 101243.	8.1	11
183	Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H 2 Syngas Production from Electrochemical CO 2 Reduction. Angewandte Chemie, 2020, 132, 11441-11444.	2.0	11
184	Relationship between lipids levels and right ventricular volume overload in congestive heart failure. Journal of Geriatric Cardiology, 2014, 11, 192-9.	0.2	11
185	Evaluation of Cardiac Involvement with Mediastinal Lymphoma: The Role of Innovative Integrated Cardiovascular Imaging. Echocardiography, 2012, 29, E189-92.	0.9	10
186	Insight into in-plane isotropic transport in anthracene-based organic semiconductors. Journal of Materials Chemistry C, 2019, 7, 14275-14283.	5.5	10
187	Enhancing the performance of solution-processed organic thin-film transistors by blending binary compatible small molecule semiconductors. Organic Electronics, 2019, 64, 104-109.	2.6	10
188	Wide band gap pyromellitic diimides for photo stable n-channel thin film transistors. Journal of Materials Chemistry C, 2020, 8, 7344-7349.	5.5	10
189	Simplified dopant-free color-tunable organic light-emitting diodes. Applied Physics Letters, 2021, 118, .	3.3	10
190	Solventâ€Free Coating of Organic Semiconductor Membranes with Centimetric Crystalline Domains. Advanced Electronic Materials, 2021, 7, 2000792.	5.1	10
191	Prednisone in Uric Acid Lowering in Symptomatic Heart Failure Patients with Hyperuricemia — The PUSH-PATH3 Study. Journal of Rheumatology, 2015, 42, 866-869.	2.0	9
192	Understanding the mechanism of improvement in practical specific capacity using halogen substituted anthraquinones as cathode materials in lithium batteries. Electrochimica Acta, 2017, 224, 622-627.	5.2	9
193	Revealing the influence of hole injection material's molecular orientation on OLED's performance. Organic Electronics, 2018, 59, 301-305.	2.6	9
194	Self-supported hysteresis-free flexible organic thermal transistor based on commercial graphite paper. Applied Physics Letters, 2018, 112, 253301.	3.3	9
195	Enzymatically Synthesized DNA Polymer as Co-carrier for Enhanced RNA Interference. ACS Applied Bio Materials, 2019, 2, 5204-5215.	4.6	9
196	Phosphorescent OLEDs with extremely low efficiency roll-off enabled via rationally designed benzimidazole-based bipolar hosts. Dyes and Pigments, 2020, 180, 108477.	3.7	9
197	Stable Lithium Metal Anodes with a GaO <i>_x</i> Artificial Solid Electrolyte Interphase in Damp Air. ACS Applied Materials & Interfaces, 2021, 13, 21467-21473.	8.0	9
198	Intrinsically flexible all-carbon-nanotube electronics enabled by a hybrid organic–inorganic gate dielectric. Npj Flexible Electronics, 2022, 6, .	10.7	9

#	Article	IF	CITATIONS
199	Pâ€170: Organic Lightâ€Emitting Diodes Incorporating a Novel Exciplexâ€Forming Host: A Synergistic Strategy to Design Highly Simplified OLEDs for Application. Digest of Technical Papers SID International Symposium, 2017, 48, 1915-1918.	0.3	8
200	Recombination Strategy for Processable Ambipolar Electroactive Polymers in Pseudocapacitors. Macromolecules, 2018, 51, 5258-5266.	4.8	8
201	Alternatingâ€Currentâ€Driven Colorâ€Tunable Organic Lightâ€Emitting Triodes. Advanced Optical Materials, 2021, 9, 2001655.	7.3	8
202	Hysteresis effect in organic thin film transistors based on naphthalene tetracarboxylic diimide derivatives. Applied Physics Letters, 2021, 118, 193302.	3.3	8
203	Identifying the Molecular Origins of Green BNâ€TADF Material Degradation and Device Stability via in situ Raman Spectroscopy. Chemistry - A European Journal, 2022, 28, .	3.3	8
204	Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors. Applied Physics Letters, 2016, 109, .	3.3	7
205	A Terpolymer Acceptor Enabling Allâ€Polymer Solar Cells with a Broad Donor:Acceptor Composition Tolerance and Enhanced Stability. Solar Rrl, 2020, 4, 2000436.	5.8	7
206	Organic single crystal phototransistors: Recent approaches and achievements. Frontiers of Physics, 2021, 16, 1.	5.0	7
207	Fluorene substituted thieno[3, 2-b]thiophene – a new electrochromic conjugated polymer. Journal of Polymer Research, 2021, 28, 1.	2.4	7
208	Thiophene-2,5-diesters as electrochromic materials: The effect of ester groups on the device performance and stability. Organic Electronics, 2021, 96, 106188.	2.6	7
209	Enabling Quasiâ€2D Perovskiteâ€Compatible Growth Environment for Efficient Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	7
210	Donor–Acceptor–Donor "Hot Exciton―Triads for High Reverse Intersystem Crossing in OLEDs. Advanced Optical Materials, 2022, 10, .	7.3	7
211	Tetra-EDOT substituted 3D electrochromic polymers with lower band gaps. Science China Chemistry, 2017, 60, 90-98.	8.2	6
212	Enhancing the electrical and thermal stability of organic thinâ€film transistors by utilizing fluorinated polyimide and silicon dioxide bilayer gate dielectric. Journal of Applied Polymer Science, 2019, 136, 47013.	2.6	6
213	Molecular tailoring of trifluoromethyl-substituted conjugated polymers for efficient organic solar cells. Polymer Chemistry, 2021, 12, 3346-3351.	3.9	6
214	A Facile Strategy for Synthesizing Organic Tannic Metal Salts as Advanced Energy Storage Anodes. ChemElectroChem, 2021, 8, 2686-2692.	3.4	6
215	Alleviating the crosstalk effect via a fine-moulded light-blocking matrix for colour-converted micro-LED display with a 122% NTSC gamut. , 2022, 3, 1.		6
216	Pâ€164: Energy Transfer from Interface Exciplexes to Ultrathin Emissive Layers: A Path Way to Design Simplified Efficient White Tandem Organic Lightâ€Emitting Diodes for Application. Digest of Technical Papers SID International Symposium, 2018, 49, 1779-1781.	0.3	5

#	Article	IF	CITATIONS
217	Computational screening and molecular design of anthracene-based semiconductors. Organic Electronics, 2018, 61, 87-95.	2.6	5
218	Onset voltage shift in the organic thin-film transistor with an atomic-layer-deposited charge-injection interlayer. Organic Electronics, 2018, 62, 248-252.	2.6	5
219	Revealing the mechanism of contrasting charge transport properties for phenyl and thienyl substituent organic semiconductors. Physical Chemistry Chemical Physics, 2019, 21, 4641-4649.	2.8	5
220	Synthesis and characterization of new nonfullerene electron acceptors with a chrysene core. Dyes and Pigments, 2020, 174, 108012.	3.7	5
221	Ionic-liquid induced enhanced performance of perovskite light-emitting diodes. Journal Physics D: Applied Physics, 2020, 53, 384002.	2.8	5
222	Thermally stable organic thin film transistors based on 2-(anthracen-2-yl)tetracene. Organic Electronics, 2020, 85, 105787.	2.6	5
223	Investigation of charge and current dynamics in PVA–KOH gel electrolyte-based supercapacitor. Journal of Materials Science: Materials in Electronics, 2022, 33, 2322-2335.	2.2	5
224	Soluble Two-Dimensional Donor–Acceptor Aza-Fused Aromatic Frameworks and their Electrochromism between the Visible and Near-Infrared Regions. Chemistry of Materials, 2022, 34, 4896-4909.	6.7	5
225	Substitution effect of super hydrophobic units: A new strategy to design deep blue fluorescent emitters. Dyes and Pigments, 2017, 139, 747-755.	3.7	4
226	A chrysene-based liquid crystalline semiconductor for organic thin-film transistors. Journal of Materials Chemistry C, 2018, 6, 3683-3689.	5.5	4
227	Facile synthesis of enhanced photoluminescent Mg:CdZnS/Mg:ZnS core/shell quantum dots. Materials Science in Semiconductor Processing, 2019, 92, 96-102.	4.0	4
228	Anthracene derivatives as highly efficient deep-blue emitters with extremely low driving voltages, Von â‰ û .7ÂV. Dyes and Pigments, 2020, 180, 108458.	3.7	4
229	Alternating current-driven quantum-dot light-emitting diodes with planar architecture. Applied Physics Letters, 2021, 118, .	3.3	4
230	Progress of Quantum Dots and Perovskite as Color Conversion Materials for Full-color Display. Chinese Journal of Luminescence, 2021, 42, 419-447.	0.5	4
231	Fused triphenylamine moiety based fluorescence emitters for deep blue OLEDs with high luminance and low turn-on voltages. Materials Advances, 2022, 3, 1729-1736.	5.4	4
232	Bright Stretchable White Alternating urrent Electroluminescent Devices Enabled by Photoluminescent Phosphor. Advanced Materials Technologies, 2022, 7, .	5.8	4
233	Self-assembled monolayers induced performance difference in organic single crystal field-effect transistors. Organic Electronics, 2019, 75, 105392.	2.6	3
234	Efficient thermally activated delayed fluorescence based on carbonitrile-substituted pyridine and carbazole. Journal of Materials Chemistry C, 2019, 7, 13754-13758.	5.5	3

#	Article	IF	CITATIONS
235	Fluoro-alkyl substituted isothianaphthene bisimides as stable n-type semiconductors. Materials Chemistry Frontiers, 2020, 4, 3578-3584.	5.9	3
236	Ï€-Conjugated zwitterion for dual-interfacial modification in high-performance perovskite solar cells. Chemical Engineering Journal, 2021, 416, 129153.	12.7	3
237	Tuning the UV/Vis Absorption Spectra of Electrochromic Small Molecular Radicals Through Bridge Modulation. ChemPhysChem, 2021, 22, 1684-1691.	2.1	3
238	Elucidating the Role of Substrates on Domain Distribution of Quasi-2D Perovskites for Blue Light-Emitting Diodes. ACS Applied Electronic Materials, 2021, 3, 4056-4065.	4.3	3
239	Narrowband Deep-Blue Multi-Resonance Induced Thermally Activated Delayed Fluorescence: Insights from the Theoretical Molecular Design. Molecules, 2022, 27, 348.	3.8	3
240	Efficient NIR Perovskite Light-Emitting Diodes Enabled by Incorporating an Anthracene Derivative as a Bifunctional Electron Transport Layer. ACS Applied Electronic Materials, 2022, 4, 1669-1677.	4.3	3
241	Novel electrically conducting polyheteroarylene azines. Journal of Materials Science Letters, 1997, 16, 841-842.	0.5	2
242	Liquid Crystals: High Performance OTFTs Fabricated Using a Calamitic Liquid Crystalline Material of 2â€(4â€Đodecyl phenyl)[1]benzothieno[3,2â€ <i>b</i>][1]benzothiophene (Adv. Electron. Mater. 9/2016). Advanced Electronic Materials, 2016, 2, .	5.1	2
243	2,3-Dimethylindole as a donor for novel thermally activated delayed fluorescence emitters. New Journal of Chemistry, 2020, 44, 2961-2965.	2.8	2
244	Effects of the Electron-Deficient Third Components in n-Type Terpolymers on Morphology and Performance of All-Polymer Solar Cells. Organic Materials, 2020, 02, 214-222.	2.0	2
245	Inverted annealing enhanced performance of organic thin-film transistors and phototransistors based on 2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene. Organic Electronics, 2020, 85, 105791.	2.6	2
246	Towards the design of ideal electrochromic materials with low driving voltage based on phthalate derivatives. Organic Electronics, 2021, 95, 106189.	2.6	2
247	Highly-concentrated electrolyte incorporating Li-ion solvation sheath interphase for encapsulation-free organic electrochromic devices. Electrochimica Acta, 2021, 390, 138870.	5.2	2
248	A New Blue Light-Emitting Polymer Containing Substituted Thiophene and an Arylene-1,3,4-oxadiazole Moiety. Advanced Materials, 1998, 10, 593-596.	21.0	2
249	Unusual Solvatochromism of a New Conjugated Polymer Containing Oxadiazole. Chemistry Letters, 1998, 27, 273-274.	1.3	1
250	Titelbild: Facile Solid-State Synthesis of Highly Conducting Poly(ethylenedioxythiophene) (Angew.) Tj ETQq0 0 0	rgBT/Over 2.0	lock 10 Tf 5
251	Metal/Organic Interfaces: Efficient Charge Injection in Organic Fieldâ€Effect Transistors Enabled by Lowâ€Temperature Atomic Layer Deposition of Ultrathin VO _x Interlayer (Adv. Funct. Mater.) Tj ETQo	114 .0. 784	314 rgBT C

High-k Boron Nitride Sheets/Polyimide Hybrid Dielectric Layers for the Fabrication of Flexible Organic Transistors on Commercial Graphite Paper. Nano, 2020, 15, 2050145.

1.0 1

#	Article	IF	CITATIONS
253	Defects Dominated Regulation of Fluorescence Properties of Copper Nanoclusters. Journal of Physics: Conference Series, 2020, 1635, 012102.	0.4	1
254	Surface/Deep Defects manipulated Fluorescence Properties and LED application of Copper Nanoclusters. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012015.	0.6	1
255	Glucocorticoids for decompensated heart failure. The Cochrane Library, 0, , .	2.8	1
256	Cover Picture: Facile Solid-State Synthesis of Highly Conducting Poly(ethylenedioxythiophene) (Angew. Chem. Int. Ed. 6/2003). Angewandte Chemie - International Edition, 2003, 42, 589-589.	13.8	0
257	Low-Voltage Organic Thin-Film Transistors with Improved Stability and Large Transconductance. Device Research Conference, IEEE Annual, 2007, , .	0.0	0
258	Fred Wudl. A giant in ï€-conjugated materials. Materials Chemistry Frontiers, 2020, 4, 3398-3399.	5.9	0
259	Full Color Emission of Fluorescent Metal Nanoclusters Regulated by Doping Heteroatom. , 2020, , .		0
260	Ultra-Bright 2D Assembled Copper Nanoclusters: Fluorescence Mechanism Exploration and LED Application. Materials Science Forum, 2020, 996, 20-25.	0.3	0
261	20.2: Invited Paper: DC/AC Threeâ€Terminal Organic Lightâ€Emitting Devices. Digest of Technical Papers SID International Symposium, 2021, 52, 275-275.	0.3	0
262	Recent Advancements in High-Performance Solid Electrolytes for Li-ion Batteries: Towards a Solid Future. Current Nanoscience, 2020, 16, 507-533.	1.2	0
263	A Localized Planarization Strategy in Hole Mobility Modulation of Disordered Triphenylamineâ€Based Organic Semiconductors. Advanced Theory and Simulations, 2021, 4, 2100236.	2.8	0
264	Chlorine substituted Nâ€heteroacene analogues acting as organic semiconductors for solutionâ€processed nâ€ŧype organic fieldâ€effect transistors. Chemistry - A European Journal, 2022, , .	3.3	0
265	A step towards the application of molecular plasmonic-like excitations of PAH derivatives in organic electrochromics. Chinese Chemical Letters, 2023, 34, 107550.	9.0	Ο