Burt M Sharp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4198977/publications.pdf Version: 2024-02-01

		76326	91884
127	5,606	40	69
papers	citations	h-index	g-index
132	132	132	3851
all docs	docs citations	times ranked	citing authors

Βιίστ Μ Shadd

#	Article	lF	CITATIONS
1	Sex and heredity are determinants of drug intake in a novel model of rat oral oxycodone selfâ€administration. Genes, Brain and Behavior, 2021, 20, e12770.	2.2	5
2	Allosteric Modulation of GABA Receptors in Rat Basolateral Amygdala Blocks Stress-Enhanced Reacquisition of Nicotine Self-Administration. ACS Pharmacology and Translational Science, 2020, 3, 1158-1164.	4.9	0
3	Allosteric Modulation of GABA _A Receptors in Rat Basolateral Amygdala Blocks Stress-Enhanced Reacquisition of Nicotine Self-Administration. ACS Pharmacology and Translational Science, 2020, 3, 1158-1164.	4.9	1
4	Basolateral amygdala, nicotinic cholinergic receptors, and nicotine: Pharmacological effects and addiction in animal models and humans. European Journal of Neuroscience, 2019, 50, 2247-2254.	2.6	21
5	Neurogenetic determinants and mechanisms of addiction to nicotine and smoked tobacco. European Journal of Neuroscience, 2019, 50, 2164-2179.	2.6	21
6	Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Translational Psychiatry, 2017, 7, e1194-e1194.	4.8	177
7	Basolateral amygdala and ventral hippocampus in stress-induced amplification of nicotine self-administration during reacquisition in rat. Psychopharmacology, 2015, 232, 2741-2749.	3.1	22
8	Protection Genes in Nucleus Accumbens Shell Affect Vulnerability to Nicotine Self-Administration across Isogenic Strains of Adolescent Rat. PLoS ONE, 2014, 9, e86214.	2.5	10
9	Fullâ€gestational exposure to nicotine and ethanol augments nicotine selfâ€administration by altering ventral tegmental dopaminergic function due to <scp>NMDA</scp> receptors in adolescent rats. Journal of Neurochemistry, 2014, 128, 701-712.	3.9	14
10	Amplified reacquisition of nicotine self-administration in rats by repeated stress during abstinence. Psychopharmacology, 2014, 231, 3189-3195.	3.1	13
11	Establishing a protocol for single cell transcriptome sequencing of the rat brain. BMC Bioinformatics, 2014, 15, .	2.6	Ο
12	Fostering itself increases nicotine self-administration in young adult male rats. Psychopharmacology, 2013, 229, 227-234.	3.1	8
13	Nicotine modulates multiple regions in the limbic stress network regulating activation of hypophysiotrophic neurons in hypothalamic paraventricular nucleus. Journal of Neurochemistry, 2012, 122, 628-640.	3.9	12
14	Genetic Factors Control Nicotine Self-Administration in Isogenic Adolescent Rat Strains. PLoS ONE, 2012, 7, e44234.	2.5	34
15	Genome-wide gene expression profiling of nucleus accumbens neurons projecting to ventral pallidum using both microarray and transcriptome sequencing. Frontiers in Neuroscience, 2011, 5, 98.	2.8	30
16	Gene expression in accumbens GABA neurons from inbred rats with different drug-taking behavior. Genes, Brain and Behavior, 2011, 10, 778-788.	2.2	18
17	Social Interaction Promotes Nicotine Self-Administration with Olfactogustatory Cues in Adolescent Rats. Neuropsychopharmacology, 2011, 36, 2629-2638.	5.4	46
18	Nicotine selfâ€administration diminishes stressâ€induced norepinephrine secretion but augments adrenergicâ€responsiveness in the hypothalamic paraventricular nucleus and enhances adrenocorticotropic hormone and corticosterone release. Journal of Neurochemistry, 2010, 112, 1327-1337.	3.9	18

#	Article	IF	CITATIONS
19	Nicotine selfâ€administration differentially modulates glutamate and GABA transmission in hypothalamic paraventricular nucleus to enhance the hypothalamic–pituitary–adrenal response to stress. Journal of Neurochemistry, 2010, 113, 919-929.	3.9	17
20	Local immune response to tissue and nerve injury mediates opioid antinociception. Brain, Behavior, and Immunity, 2010, 24, 1043-1044.	4.1	0
21	Neuroadaptive changes in the mesocortical glutamatergic system during chronic nicotine selfâ€administration and after extinction in rats. Journal of Neurochemistry, 2008, 106, 943-956.	3.9	18
22	Stromal cell-derived factor 1-α (SDF)-induced human T cell chemotaxis becomes phosphoinositide 3-kinase (PI3K)-independent: role of PKC-Î, Journal of Leukocyte Biology, 2008, 83, 663-671.	3.3	16
23	Chronic Nicotine Self-Administration Augments Hypothalamic–Pituitary–Adrenal Responses to Mild Acute Stress. Neuropsychopharmacology, 2008, 33, 721-730.	5.4	55
24	Nicotine Self-Administration Differentially Regulates Hypothalamic Corticotropin-Releasing Factor and Arginine Vasopressin mRNAs and Facilitates Stress-Induced Neuronal Activation. Journal of Neuroscience, 2008, 28, 2773-2782.	3.6	26
25	Acquisition of Nicotine Self-Administration in Adolescent Rats Given Prolonged Access to the Drug. Neuropsychopharmacology, 2007, 32, 700-709.	5.4	100
26	Upregulation of Ionotropic Glutamate Receptor Subunits within Specific Mesocorticolimbic Regions during Chronic Nicotine Self-Administration. Neuropsychopharmacology, 2007, 32, 103-109.	5.4	89
27	Nicotine-Induced Norepinephrine Release in Hypothalamic Paraventricular Nucleus and Amygdala Is Mediated by N-Methyl-d-aspartate Receptors and Nitric Oxide in the Nucleus Tractus Solitarius. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 837-844.	2.5	42
28	Multiple opioid receptors on immune cells modulate intracellular signaling. Brain, Behavior, and Immunity, 2006, 20, 9-14.	4.1	138
29	δ Opioid Receptors Stimulate Akt-Dependent Phosphorylation of c-jun in T Cells. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 933-939.	2.5	26
30	Gestational nicotine exposure reduces nicotinic cholinergic receptor (nAChR) expression in dopaminergic brain regions of adolescent rats. European Journal of Neuroscience, 2005, 22, 380-388.	2.6	69
31	Immunofluorescence Detection of Anti-CD3-Îμ-Induced Delta Opioid Receptors by Murine Splenic T Cells. , 2005, , 141-147.		1
32	Up-Regulation of Brain Nicotinic Acetylcholine Receptors in the Rat during Long-Term Self-Administration of Nicotine: Disproportionate Increase of the α6 Subunit. Molecular Pharmacology, 2004, 65, 611-622.	2.3	98
33	Gestational Nicotine Exposure Attenuates Nicotine-Stimulated Dopamine Release in the Nucleus Accumbens Shell of Adolescent Lewis Rats. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 521-528.	2.5	63
34	Effects of Galantamine, a Nicotinic Allosteric Potentiating Ligand, on Nicotine-Induced Catecholamine Release in Hippocampus and Nucleus Accumbens of Rats. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1116-1123.	2.5	23
35	Neuroimmune circuits and infectious disease: Proceedings of the 9th Conference of the Society on NeuroImmune Pharmacology. Journal of Neuroimmunology, 2004, 147, 2.	2.3	0
36	Opioid receptor expression and function. Journal of Neuroimmunology, 2004, 147, 3-5.	2.3	20

#	Article	IF	CITATIONS
37	Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics, 2004, 5, 147.	2.6	281
38	Opioid Receptors and HIV Infection. , 2004, , 693-706.		0
39	Phosphorylation of activating transcription factor in murine splenocytes through delta opioid receptors. Cellular Immunology, 2003, 221, 122-127.	3.0	19
40	Norepinephrine release in amygdala of rats during chronic nicotine self-administration: an in vivo microdialysis study. Neuropharmacology, 2003, 45, 514-523.	4.1	28
41	Opioid receptor expression and intracellular signaling by cells involved in host defense and immunity. Advances in Experimental Medicine and Biology, 2003, 521, 98-105.	1.6	28
42	Chronic Self-Administration of Nicotine in Rats Impairs T Cell Responsiveness. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 935-939.	2.5	31
43	Oliz, a suite of Perl scripts that assist in the design of microarrays using 50mer oligonucleotides from the 3' untranslated region. BMC Bioinformatics, 2002, 3, 27.	2.6	20
44	Rat strain differences in nicotine self-administration using an unlimited access paradigm. Brain Research, 2002, 930, 12-20.	2.2	79
45	Norepinephrine Secretion in the Hypothalamic Paraventricular Nucleus of Rats during Unlimited Access to Self-Administered Nicotine: An <i>In Vivo</i> Microdialysis Study. Journal of Neuroscience, 2001, 21, 8979-8989.	3.6	59
46	Region-specific transcriptional response to chronic nicotine in rat brain. Brain Research, 2001, 909, 194-203.	2.2	96
47	Immunofluorescence Detection of δ Opioid Receptors (DOR) on Human Peripheral Blood CD4+ T Cells and DOR-Dependent Suppression of HIV-1 Expression. Journal of Immunology, 2001, 167, 1097-1102.	0.8	41
48	Nicotine administration enhances NPY expression in the rat hypothalamus. Brain Research, 2000, 867, 157-164.	2.2	111
49	Expression of Delta Opioid Receptors by Splenocytes from SEB-Treated Mice and Effects on Phosphorylation of MAP Kinase. Cellular Immunology, 2000, 205, 84-93.	3.0	24
50	Nicotine Enhances the Biosynthesis and Secretion of Transthyretin from the Choroid Plexus in Rats: Implications for β-Amyloid Formation. Journal of Neuroscience, 2000, 20, 1318-1323.	3.6	52
51	Local α-bungarotoxin-sensitive nicotinic receptors in the nucleus accumbens modulate nicotine-stimulated dopamine secretion in vivo. Neuroscience, 2000, 101, 369-375.	2.3	62
52	Expression of Delta Opioid Receptors and Transcripts by Splenic T Cells. Annals of the New York Academy of Sciences, 2000, 917, 764-770.	3.8	18
53	Delta opioid receptors expressed by stably transfected jurkat cells signal through the map kinase pathway in a ras-independent manner. Journal of Neuroimmunology, 1999, 94, 48-57.	2.3	29
54	Inhibition of nicotine-induced hippocampal norepinephrine release in rats by alpha-conotoxins MII and AuIB microinjected into the locus coeruleus. Neuroscience Letters, 1999, 266, 113-116.	2.1	29

#	Article	IF	CITATIONS
55	Regulation of delta opioid receptor expression by anti-CD3-ε, PMA, and ionomycin in murine splenocytes and T cells. Journal of Leukocyte Biology, 1999, 65, 707-714.	3.3	33
56	Signaling through Delta Opioid Receptors on Murine Splenic T Cells and Stably Transfected Jurkat Cells. Annals of the New York Academy of Sciences, 1998, 840, 420-424.	3.8	20
57	Î-Opioid Suppression of Human Immunodeficiency Virus-1 Expression in T Cells (Jurkat). Biochemical Pharmacology, 1998, 56, 289-292.	4.4	36
58	The δ1-opioid receptor antagonist, 7-benzylspiroindanylnaltrexone, prolongs renal allograft survival in a rat model. European Journal of Pharmacology, 1998, 354, R3-R5.	3.5	9
59	Response of the hypothalamo-pituitary-adrenal axis to nicotine. Psychoneuroendocrinology, 1998, 23, 103-113.	2.7	130
60	Evidence for opioid receptors on cells involved in host defense and the immune system. Journal of Neuroimmunology, 1998, 83, 45-56.	2.3	173
61	Desensitization and resensitization of norepinephrine release in the rat hippocampus with repeated nicotine administration. Neuroscience Letters, 1998, 241, 147-150.	2.1	13
62	Cellular Mechanisms Involved in the Modulation of the Immune System by Drugs of Abuse. Advances in Experimental Medicine and Biology, 1998, 437, 1-12.	1.6	9
63	Adrenocorticotropin Response and Nicotine-Induced Norepinephrine Secretion in the Rat Paraventricular Nucleus Are Mediated through Brainstem Receptors*. Endocrinology, 1997, 138, 1935-1943.	2.8	38
64	Characterization of a naloxone-insensitive β-endorphin receptor on murine peritoneal macrophages. Life Sciences, 1997, 60, 573-586.	4.3	22
65	Detection of basal levels and induction of delta opioid receptor mRNA in murine splenocytes. Journal of Neuroimmunology, 1997, 78, 198-202.	2.3	34
66	Pain killers of the immune system. Nature Medicine, 1997, 3, 831-832.	30.7	29
67	Nicotine activates NPY and catecholaminergic neurons in brainstem regions involved in ACTH secretion. Brain Research, 1997, 759, 259-269.	2.2	25
68	Nicotinic activation of CRH neurons in extrahypothalamic regions of the rat brain. Endocrine, 1997, 7, 245-253.	2.2	31
69	Self-administration in rats allowed unlimited access to nicotine. Psychopharmacology, 1997, 133, 300-304.	3.1	120
70	Adrenocorticotropin Response and Nicotine-Induced Norepinephrine Secretion in the Rat Paraventricular Nucleus Are Mediated through Brainstem Receptors. Endocrinology, 1997, 138, 1935-1943.	2.8	25
71	Expression of opioid receptor by immune cells. Journal of Neuroimmunology, 1996, 69, 3-13.	2.3	8
72	Dual signal transduction through delta opioid receptors in a transfected human T-cell line Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8294-8299.	7.1	45

#	Article	IF	CITATIONS
73	Nicotinic Agonists Administered into the Fourth Ventricle Stimulate Norepinephrine Secretion in the Hypothalamic Paraventricular Nucleus: An in vivo Microdialysis Study. Neuroendocrinology, 1995, 61, 383-392.	2.5	31
74	Rapid Recovery from Adrenal Insufficiency due to Bilateral Adrenal Hemorrhage. , 1995, 5, 312-315.		0
75	Nicotine regulates nicotinic cholinergic receptors and subunit rnRNAs in PC 12 cells through protein kinase A. Molecular Brain Research, 1995, 32, 143-150.	2.3	23
76	Activation of the Hypothalamic-Pituitary-Adrenal Axis by Nicotine: Neurochemical and Neuroanatomical Substrates. , 1995, , 159-166.		2
77	Expression of naloxone-resistant β-endorphin binding sites on A20 cells: effects of concanavalin A and dexamethasone. Immunopharmacology, 1994, 28, 183-192.	2.0	14
78	Prostaglandins Mediate the ACTH Response to Interleukin-1-Beta Instilled into the Hypothalamic Median Eminence. Neuroendocrinology, 1994, 60, 426-435.	2.5	46
79	Induction and Desensitization of the c-Fos mRNA Response to Nicotine in Rat Brain. Molecular and Cellular Neurosciences, 1993, 4, 199-208.	2.2	26
80	Interleukin-1α and Interleukin-1β Stimulate Adrenocorticotropin Secretion in the Rat through a Similar Hypothalamic Receptor(s): Effects of Interleukin-1 Receptor Antagonist Protein. Neuroendocrinology, 1993, 57, 14-22.	2.5	27
81	A Central Mechanism Is Involved in the Secretion of ACTH in Response to IL-6 in Rats: Comparison to and Interaction with IL-11². Neuroendocrinology, 1992, 56, 516-525.	2.5	70
82	Brain nicotinic receptors isolated by a monospecific antibody against a synthetic α-3 subunit receptor peptide compared to a monoclonal anti-idiotypic (to nicotine) antibody. Biochemical and Biophysical Research Communications, 1992, 182, 1303-1308.	2.1	7
83	N-Acetyl-β-endorphin1–31 antagonizes the suppressive effect of β-endorphin1–31 on murine splenocyte proliferation via A naloxone-resistant receptor. Biochemical and Biophysical Research Communications, 1991, 175, 936-942.	2.1	25
84	Induction of the Messenger Ribonucleic Acid for Proenkephalin A in Cultured Murine CD4-Positive Thymocytes*. Endocrinology, 1991, 128, 717-724.	2.8	30
85	Effects of Morphine Addiction on the Pathogenesis of Murine Toxoplasmosis. Advances in Experimental Medicine and Biology, 1991, 288, 223-227.	1.6	7
86	Biochemical Characterization of Naloxone-Resistant Receptors for B-Endorphin on a Human Mononuclear Cell Line (U937) and Murine Splenocytes. Advances in Experimental Medicine and Biology, 1991, 288, 215-222.	1.6	0
87	Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. Aids, 1990, 4, 869-874.	2.2	231
88	Murine Splenocytes Express a Naloxone-Insensitive Binding Site for β-Endorphin*. Endocrinology, 1990, 126, 1442-1448.	2.8	49
89	β-Endorphin Binding to Naloxone-Insensitive Sites on a Human Mononuclear Cell Line (U937): Effects of Cations and Guanosine Triphosphate*. Endocrinology, 1990, 126, 3006-3015.	2.8	39
90	The Adrenocorticotropin Response to Interleukin-1β Instilled into the Rat Median Eminence Depends on the Local Release of Catecholamines*. Endocrinology, 1990, 127, 2175-2182.	2.8	92

#	Article	IF	CITATIONS
91	Catecholamines Mediate Nicotine-Induced Adrenocorticotropin Secretion via a-Adrenergic Receptors*. Endocrinology, 1990, 127, 1646-1655.	2.8	39
92	Effects of immobilization stress on the pathogenesis of acute murine toxoplasmosis. Brain, Behavior, and Immunity, 1990, 4, 162-169.	4.1	19
93	Suppression of Human Peripheral Blood Mononuclear Cell Function by Methadone and Morphine. Journal of Infectious Diseases, 1989, 159, 480-487.	4.0	70
94	Tumor Necrosis Factor-α is a Potent ACTH Secretagogue: Comparison to Interleukin-1β. Endocrinology, 1989, 124, 3131-3133.	2.8	219
95	An analysis of total RNA translation products of rat liver during regeneration with a comparison to fetal liver. Cell Differentiation and Development, 1989, 28, 119-128.	0.4	1
96	Monospecific antibodies against a synthetic peptide predicted from the alpha-3 nicotinic receptor cDNA inhibit binding of [3H]nicotine to rat brain nicotinic cholinergic receptor. Biochemical and Biophysical Research Communications, 1989, 165, 151-157.	2.1	5
97	Modulatory effects of β-endorphin on interferon-γ production by cultured peripheral blood mononuclear cells: Heterogeneity among donors and the influence of culture medium. Brain, Behavior, and Immunity, 1988, 2, 187-197.	4.1	22
98	Regulation of the Messenger Ribonucleic Acid for Corticotropin-Releasing Factor in the Paraventricular Nucleus and Other Brain Sites of the Rat*. Endocrinology, 1988, 123, 2117-2123.	2.8	167
99	Corticotropin-releasing factor in cerebellar afferent systems: a combined immunohistochemistry and retrograde transport study. Journal of Neuroscience, 1988, 8, 543-554.	3.6	69
100	Distribution of nicotinic binding sites with respect to CRF and neurophysin immunoreactive perikarya within the rat hypothalamus. Brain Research, 1987, 422, 361-366.	2.2	24
101	Opioid-mediated suppression of interferon-gamma production by cultured peripheral blood mononuclear cells Journal of Clinical Investigation, 1987, 80, 824-831.	8.2	170
102	Endogenous Opioid Peptides: Do They Mediate the Acute Antihypertensive Action of Clonidine in Humans?. Hormone Research, 1986, 23, 193-199.	1.8	7
103	β-Endorphin Attenuates the Serum Cortisol Response to Exogenous Adrenocorticotropin. Journal of Clinical Endocrinology and Metabolism, 1986, 62, 808-811.	3.6	21
104	OPIOID PEPTIDES RAPIDLY STIMULATE SUPEROXIDE PRODUCTION BY HUMAN POLYMORPHONUCLEAR LEUKOCYTES AND MACROPHAGES. Endocrinology, 1985, 117, 793-795.	2.8	174
105	Severe Hypertension Induced by Naloxone. American Journal of the Medical Sciences, 1985, 290, 70-72.	1.1	26
106	Failure to Confirm Consistent Stimulation of Growth Hormone by Diazepam. Hormone Research, 1984, 19, 86-90.	1.8	8
107	Somatostatin-14 and -28 in the male rat reproductive system. Life Sciences, 1984, 34, 939-945.	4.3	23
108	Studies of naloxone-induced secretion of β-endorphin immunoreactivity in dogs. Life Sciences, 1984, 35, 1535-1545.	4.3	14

#	Article	IF	CITATIONS
109	Thyrotropin-releasing hormone levels decrease in hypothalamus of aging rats. Neurobiology of Aging, 1984, 5, 221-226.	3.1	19
110	High concentrations of p-Glu-His-Pro-NH2 (Thyrotropin-releasing hormone) occur in rat prostate. Peptides, 1983, 4, 915-919.	2.4	45
111	Endemic Goiter in Vietnam*. Journal of Clinical Endocrinology and Metabolism, 1983, 57, 243-249.	3.6	33
112	Adrenocortical response to corticotropin is inhibited by γ3-MSH antisera in normotensive and spontaneously hypertensive rats. Biochemical and Biophysical Research Communications, 1983, 110, 357-363.	2.1	21
113	Radioimmunoassay detection of endorphins from long-term culture of human pituitary tumour cells. European Journal of Endocrinology, 1982, 99, 174-178.	3.7	5
114	Effect of Domperidone, an Extracerebral Inhibitor of Dopamine Receptors, on Thyrotropin, Prolactin, Renin,Aldosterone, and 18-Hydroxycorticosterone Secretion in Man. Journal of Clinical Endocrinology and Metabolism, 1982, 54, 869-871.	3.6	54
115	\hat{l}^2 -Endorphin Immunoreactivity and Acute Behavioral Distress in Children with Leukemia. Journal of Nervous and Mental Disease, 1982, 170, 72-77.	1.0	41
116	DOPAMINE REGULATES CANINE PLASMA β-ENDORPHIN-IMMUNOREACTIVITY LEVELS. Endocrinology, 1982, 110, 1828-1830.	2.8	31
117	CSF β-endorphin-immunoreactivity in normal, schiziphrenic, depressed, manic and anorexic subjects. Brain Research, 1982, 237, 244-247.	2.2	79
118	Domperidone elevates rat plasma β-endorphin-immunoreactivity when administered peripherally but not intracerebroventricularly. Life Sciences, 1982, 31, 981-985.	4.3	21
119	Peripherally Administered β-Endorphin Increases Cerebrospinal Fluid Endorphin Immunoreactivity*. Journal of Clinical Endocrinology and Metabolism, 1982, 55, 358-360.	3.6	51
120	Neurotransmitter control of hypothalamic-pituitary-thyroid functions in rats. European Journal of Pharmacology, 1981, 70, 263-271.	3.5	32
121	The role of opiates and endogenous opioid peptides in the regulation of rat TSH secretion. Brain Research, 1981, 219, 335-344.	2.2	47
122	Metoclopramide, a dopamine antagonist, stimulates aldosterone secretion in rhesus monkeys but not in dogs or rabbits. Life Sciences, 1981, 29, 2171-2175.	4.3	23
123	Thyrotropin-releasing hormone and a homologous peptide in the reproductive system of the female rat and pig. Biochemical and Biophysical Research Communications, 1981, 99, 73-80.	2.1	14
124	Morphine and Naloxone: Effects on β-Endorphin Immunoreactivity in Canine Plasma and Secretions from Rat Pituitaries*. Endocrinology, 1981, 109, 146-151.	2.8	34
125	β-ENDORPHIN _{61–91} AND OTHER β-ENDORPHIN-IMMUNOREACTIVE PEPTIDES IN HUMAN SEMEN. Journal of Clinical Endocrinology and Metabolism, 1981, 52, 586-588.	3.6	68
126	Treatment of Hyperthyroidism with Sodium Ipodate (Oragrafin) in Addition to Propylthiouracil and Propranolol*. Journal of Clinical Endocrinology and Metabolism, 1981, 53, 622-625.	3.6	43

#	Article	IF	CITATIONS
127	β-Endorphin in male rat reproductive organs. Biochemical and Biophysical Research Communications, 1980, 95, 618-623.	2.1	80