David J Norris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4198567/publications.pdf

Version: 2024-02-01

169 papers 34,593 citations

61 h-index 155

177 all docs

177
docs citations

177 times ranked

29886 citing authors

g-index

#	Article	IF	CITATIONS
1	Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115, 8706-8715.	13.7	8,492
2	In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science, 2002, 298, 1759-1762.	12.6	2,961
3	On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414, 289-293.	27.8	1,575
4	Doping semiconductor nanocrystals. Nature, 2005, 436, 91-94.	27.8	1,491
5	Doped Nanocrystals. Science, 2008, 319, 1776-1779.	12.6	1,324
6	Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Physical Review B, 1996, 54, 4843-4856.	3.2	1,197
7	Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Physical Review B, 1996, 53, 16338-16346.	3.2	980
8	Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices. Nano Letters, 2007, 7, 1793-1798.	9.1	935
9	Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics, 2015, 2, 326-333.	6.6	818
10	High-Quality Manganese-Doped ZnSe Nanocrystals. Nano Letters, 2001, 1, 3-7.	9.1	782
11	Hot-Electron Transfer from Semiconductor Nanocrystals. Science, 2010, 328, 1543-1547.	12.6	775
12	Ultrasmooth Patterned Metals for Plasmonics and Metamaterials. Science, 2009, 325, 594-597.	12.6	770
13	Observation of the "Dark Exciton" in CdSe Quantum Dots. Physical Review Letters, 1995, 75, 3728-3731.	7.8	759
14	Bright triplet excitons in caesium lead halide perovskites. Nature, 2018, 553, 189-193.	27.8	716
15	Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. Physical Review Letters, 1996, 77, 3873-3876.	7.8	690
16	Size dependence of exciton fine structure in CdSe quantum dots. Physical Review B, 1996, 53, 16347-16354.	3.2	467
17	Measurement of the size dependent hole spectrum in CdSe quantum dots. Physical Review Letters, 1994, 72, 2612-2615.	7.8	463
18	Engineering metallic nanostructures for plasmonics and nanophotonics. Reports on Progress in Physics, 2012, 75, 036501.	20.1	427

#	Article	IF	Citations
19	Opaline Photonic Crystals: How Does Self-Assembly Work?. Advanced Materials, 2004, 16, 1393-1399.	21.0	406
20	Three-Dimensional Imaging of Single Molecules Solvated in Pores of Poly(acrylamide) Gels. Science, 1996, 274, 966-968.	12.6	364
21	Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots. Advanced Materials, 1999, 11, 165-169.	21.0	355
22	Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals. Advanced Materials, 2001, 13, 371-376.	21.0	336
23	Electronic Impurity Doping in CdSe Nanocrystals. Nano Letters, 2012, 12, 2587-2594.	9.1	335
24	Solar Cells Based on Junctions between Colloidal PbSe Nanocrystals and Thin ZnO Films. ACS Nano, 2009, 3, 3638-3648.	14.6	250
25	Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. Journal of Applied Physics, $2012,111,.$	2.5	221
26	Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chemical Communications, 2011, 47, 11721.	4.1	219
27	Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing. ACS Nano, 2011, 5, 6244-6253.	14.6	203
28	An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nature Materials, 2017, 16, 743-748.	27.5	193
29	Facile Synthesis of Silver Chalcogenide (Ag $<$ sub $>$ 2 $<$ /sub $>$ E; E = Se, S, Te) Semiconductor Nanocrystals. Journal of the American Chemical Society, 2011, 133, 6509-6512.	13.7	189
30	Simultaneous Imaging of Individual Molecules Aligned Both Parallel and Perpendicular to the Optic Axis. Physical Review Letters, 1998, 81, 5322-5325.	7.8	180
31	Three-Dimensional Plasmonic Nanofocusing. Nano Letters, 2010, 10, 1369-1373.	9.1	167
32	Size-Dependent Electrical Transport in CdSe Nanocrystal Thin Films. Nano Letters, 2010, 10, 3727-3732.	9.1	134
33	Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals. Nano Letters, 2008, 8, 3238-3243.	9.1	126
34	Single-domain spectroscopy of self-assembled photonic crystals. Applied Physics Letters, 2000, 76, 1627-1629.	3.3	124
35	Avoiding cracks in self-assembled photonic band-gap crystals. Applied Physics Letters, 2004, 84, 3573-3575.	3.3	122
36	Conjugated-Polymer Photonic Crystals. Advanced Materials, 2000, 12, 1176-1180.	21.0	120

#	Article	IF	CITATIONS
37	Structure in the lowest absorption feature of CdSe quantum dots. Journal of Chemical Physics, 1995, 103, 5260-5268.	3.0	119
38	Singleâ€Crystalline Silver Films for Plasmonics. Advanced Materials, 2012, 24, 3988-3992.	21.0	118
39	Size- and Temperature-Dependent Charge Transport in PbSe Nanocrystal Thin Films. Nano Letters, 2011, 11, 3887-3892.	9.1	114
40	High Carrier Densities Achieved at Low Voltages in Ambipolar PbSe Nanocrystal Thin-Film Transistors. Nano Letters, 2009, 9, 3848-3852.	9.1	111
41	Impact of Ripening on Manganese-Doped ZnSe Nanocrystals. Nano Letters, 2006, 6, 334-340.	9.1	110
42	Strong Electronic Coupling in Two-Dimensional Assemblies of Colloidal PbSe Quantum Dots. ACS Nano, 2009, 3, 1532-1538.	14.6	109
43	Confocal reference free traction force microscopy. Nature Communications, 2016, 7, 12814.	12.8	109
44	Wedge Waveguides and Resonators for Quantum Plasmonics. Nano Letters, 2015, 15, 6267-6275.	9.1	107
45	Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency. Applied Physics Letters, 2009, 95, .	3.3	92
46	Quantum confinement in silver selenide semiconductor nanocrystals. Chemical Communications, 2012, 48, 5458.	4.1	92
47	Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields. ACS Photonics, 2016, 3, 1619-1625.	6.6	89
48	The Role of Thickness Transitions in Convective Assembly. Nano Letters, 2006, 6, 2249-2253.	9.1	84
49	Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates. ACS Nano, 2015, 9, 10647-10654.	14.6	79
50	High-temperature growth of thick-shell CdSe/CdS core/shell nanoplatelets. Chemical Communications, 2017, 53, 9938-9941.	4.1	75
51	Plasmon-Induced Direct Hot-Carrier Transfer at Metal–Acceptor Interfaces. ACS Nano, 2019, 13, 3188-3195.	14.6	75
52	Optical Fourier surfaces. Nature, 2020, 582, 506-510.	27.8	75
53	Doping and Charging in Colloidal Semiconductor Nanocrystals. MRS Bulletin, 2001, 26, 1005-1008.	3.5	73
54	Chiral Light Design and Detection Inspired by Optical Antenna Theory. Nano Letters, 2018, 18, 4633-4640.	9.1	73

#	Article	IF	CITATIONS
55	Influence of Atmospheric Gases on the Electrical Properties of PbSe Quantum-Dot Films. Journal of Physical Chemistry C, 2010, 114, 9988-9996.	3.1	72
56	Near-Field Light Design with Colloidal Quantum Dots for Photonics and Plasmonics. Nano Letters, 2014, 14, 5827-5833.	9.1	70
57	Colloidal-Quantum-Dot Ring Lasers with Active Color Control. Nano Letters, 2018, 18, 1028-1034.	9.1	70
58	Stark spectroscopy of CdSe nanocrystallites: The significance of transition linewidths. Journal of Chemical Physics, 1995, 103, 5236-5245.	3.0	68
59	Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission. Nano Letters, 2017, 17, 1319-1325.	9.1	68
60	Beaming thermal emission from hot metallic bull's eyes. Optics Express, 2010, 18, 4829.	3.4	67
61	Tailoring Air Defects in Self-Assembled Photonic Bandgap Crystals. Advanced Materials, 2005, 17, 1908-1911.	21.0	65
62	Microscopic Theory of Cation Exchange in CdSe Nanocrystals. Physical Review Letters, 2014, 113, 156803.	7.8	64
63	Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Chargeâ€6elective Protein Detection. Advanced Materials, 2015, 27, 6244-6250.	21.0	63
64	Observation of Thermal Beaming from Tungsten and Molybdenum Bull's Eyes. ACS Photonics, 2016, 3, 494-500.	6.6	63
65	Broadband Up-Conversion at Subsolar Irradiance: Triplet–Triplet Annihilation Boosted by Fluorescent Semiconductor Nanocrystals. Nano Letters, 2014, 14, 6644-6650.	9.1	62
66	Colloidal Crystal Layers of Hexagonal Nanoplates by Convective Assembly. Langmuir, 2006, 22, 5217-5219.	3.5	60
67	Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40180-40186.	8.0	60
68	Monolithic Integration of Continuously Tunable Plasmonic Nanostructures. Nano Letters, 2011, 11, 3526-3530.	9.1	59
69	Compositional Grading for Efficient and Narrowband Emission in CdSe-Based Core/Shell Nanoplatelets. Chemistry of Materials, 2019, 31, 9567-9578.	6.7	59
70	Defective promise in photonics. Nature, 2002, 416, 685-686.	27.8	57
71	Europium-Doped NaYF ₄ Nanocrystals as Probes for the Electric and Magnetic Local Density of Optical States throughout the Visible Spectral Range. Nano Letters, 2016, 16, 7254-7260.	9.1	57
72	Ripening of Semiconductor Nanoplatelets. Nano Letters, 2017, 17, 6870-6877.	9.1	56

#	Article	IF	CITATIONS
73	Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals. Journal of the American Chemical Society, 2021, 143, 2037-2048.	13.7	56
74	Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing. Nano Letters, 2016, 16, 7849-7856.	9.1	54
75	A view of the future. Nature Materials, 2007, 6, 177-178.	27.5	53
76	Thermally Degradable Ligands for Nanocrystals. ACS Nano, 2010, 4, 4523-4530.	14.6	53
77	Complex Chiral Colloids and Surfaces via High-Index Off-Cut Silicon. Nano Letters, 2014, 14, 2934-2940.	9.1	53
78	Tailoring Self-Assembled Metallic Photonic Crystals for Modified Thermal Emission. Physical Review Letters, 2007, 99, 053906.	7.8	52
79	Mechanistic Principles of Colloidal Crystal Growth by Evaporation-Induced Convective Steering. Langmuir, 2008, 24, 13683-13693.	3.5	52
80	Influence of Silver Doping on Electron Transport in Thin Films of PbSe Nanocrystals. Advanced Materials, 2013, 25, 725-731.	21.0	51
81	Solid-Phase Flexibility in Ag ₂ Se Semiconductor Nanocrystals. Nano Letters, 2014, 14, 115-121.	9.1	51
82	A customizable class of colloidal-quantum-dot metallic lasers and amplifiers. Science Advances, 2017, 3, e1700688.	10.3	50
83	Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals. Journal of Materials Chemistry, 2011, 21, 10836.	6.7	49
84	Linewidthâ€Optimized Extraordinary Optical Transmission in Water with Templateâ€Stripped Metallic Nanohole Arrays. Advanced Functional Materials, 2012, 22, 4439-4446.	14.9	49
85	Excitation of a single molecule on the surface of a spherical microcavity. Applied Physics Letters, 1997, 71, 297-299.	3.3	47
86	Thermally Stable Organic–Inorganic Hybrid Photoresists for Fabrication of Photonic Band Gap Structures with Direct Laser Writing. Advanced Materials, 2008, 20, 606-610.	21.0	46
87	Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers. ACS Nano, 2020, 14, 5223-5232.	14.6	46
88	Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Scientific Reports, 2013, 3, 1857.	3.3	43
89	Direct hot-carrier transfer in plasmonic catalysis. Faraday Discussions, 2019, 214, 189-197.	3.2	43
90	Understanding Discrete Growth in Semiconductor Nanocrystals: Nanoplatelets and Magic-Sized Clusters. Accounts of Chemical Research, 2021, 54, 1545-1554.	15.6	42

#	Article	IF	Citations
91	Charge Trapping Defects in CdSe Nanocrystal Quantum Dots. Journal of Physical Chemistry C, 2016, 120, 13763-13770.	3.1	41
92	Electron Dynamics at the ZnO (101ì0) Surface. Journal of Physical Chemistry C, 2008, 112, 14682-14692.	3.1	38
93	Synthesis and characterization of Al- and In-doped CdSe nanocrystals. Journal of Materials Chemistry, 2012, 22, 6335.	6.7	37
94	Localization of Ag Dopant Atoms in CdSe Nanocrystals by Reverse Monte Carlo Analysis of EXAFS Spectra. Journal of Physical Chemistry C, 2015, 119, 18762-18772.	3.1	36
95	Low-temperature enhancement of plasmonic performance in silver films. Optical Materials Express, 2015, 5, 1147.	3.0	35
96	Observation of Electron Shakeup in CdSe/CdS Core/Shell Nanoplatelets. Nano Letters, 2019, 19, 8495-8502.	9.1	34
97	The role of fluid flow and convective steering during the assembly of colloidal crystals. Journal of Crystal Growth, 2008, 310, 131-139.	1.5	33
98	Imaging "Invisible―Dopant Atoms in Semiconductor Nanocrystals. Nano Letters, 2011, 11, 5553-5557.	9.1	33
99	New Aspects of Nanocrystal Research. MRS Bulletin, 2001, 26, 981-984.	3.5	31
100	Printable Nanoscopic Metamaterial Absorbers and Images with Diffraction-Limited Resolution. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11690-11697.	8.0	30
101	Full-Spectrum Flexible Color Printing at the Diffraction Limit. ACS Photonics, 2016, 3, 754-757.	6.6	29
102	Effects of Thermal Processes on the Structure of Monolithic Tungsten and Tungsten Alloy Photonic Crystals. Chemistry of Materials, 2007, 19, 4563-4569.	6.7	28
103	Getting Moore from Solar Cells. Science, 2012, 338, 625-626.	12.6	28
104	Effect of Different Manganese Precursors on the Doping Efficiency in ZnSe Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 21969-21975.	3.1	27
105	Fabrication of Smooth Patterned Structures of Refractory Metals, Semiconductors, and Oxides via Template Stripping. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9701-9708.	8.0	27
106	Three-Dimensional Enantiomeric Recognition of Optically Trapped Single Chiral Nanoparticles. Physical Review Letters, 2018, 121, 023902.	7.8	27
107	Trion Emission Dominates the Low-Temperature Photoluminescence of CdSe Nanoplatelets. Nano Letters, 2020, 20, 5814-5820.	9.1	27
108	Comment on "Self-Purification in Semiconductor Nanocrystals― Physical Review Letters, 2008, 100, 179702; author reply 179703.	7.8	25

#	Article	IF	Citations
109	In situ high temperature TEM analysis of sintering in nanostructured tungsten and tungsten–molybdenum alloy photonic crystals. Journal of Materials Chemistry, 2010, 20, 1538-1545.	6.7	25
110	Improved dielectric functions in metallic films obtained via template stripping. Applied Physics Letters, 2012, 100, 081105.	3.3	25
111	Charge effects and nanoparticle pattern formation in electrohydrodynamic NanoDrip printing of colloids. Nanoscale, 2016, 8, 6028-6034.	5.6	25
112	Experimental Evidence for Two-Dimensional Ostwald Ripening in Semiconductor Nanoplatelets. Chemistry of Materials, 2020, 32, 3312-3319.	6.7	25
113	Electrically tunable quantum confinement of neutral excitons. Nature, 2022, 606, 298-304.	27.8	25
114	Future directions in solid state chemistry: report of the NSF-sponsored workshop. Progress in Solid State Chemistry, 2002, 30, 1-101.	7.2	24
115	Selective excitation of erbium in silicon-infiltrated silica colloidal photonic crystals. Journal of Applied Physics, 2004, 95, 2297-2302.	2.5	24
116	Imaging Impurities in Semiconductor Nanostructures. Chemistry of Materials, 2013, 25, 1332-1350.	6.7	24
117	Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters, 2019, 19, 108-115.	9.1	23
118	Tailoring Energy Transfer from Hot Electrons to Adsorbate Vibrations for Plasmon-Enhanced Catalysis. ACS Catalysis, 2017, 7, 8343-8350.	11.2	22
119	Microsecond Blinking Events in the Fluorescence of Colloidal Quantum Dots Revealed by Correlation Analysis on Preselected Photons. Journal of Physical Chemistry Letters, 2019, 10, 3732-3738.	4.6	22
120	Unraveling the Origin of the Long Fluorescence Decay Component of Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2020, 14, 14939-14946.	14.6	22
121	Single-Molecule Spectroscopy and Quantum Optics in Solids. Advances in Atomic, Molecular and Optical Physics, 1998, 38, 193-236.	2.3	20
122	Optical Properties of Amorphous and Crystalline GeTe Nanoparticle Thin Films: A Phase-Change Material for Tunable Photonics. ACS Applied Nano Materials, 2020, 3, 4314-4320.	5.0	20
123	Nanoscale Bouligand Multilayers: Giant Circular Dichroism of Helical Assemblies of Plasmonic 1D Nano-Objects. ACS Nano, 2021, 15, 13653-13661.	14.6	20
124	Quantifying stacking faults and vacancies in thin convectively assembled colloidal crystals. Applied Physics Letters, 2006, 89, 241913.	3.3	19
125	The Potential of Combining Thermal Scanning Probes and Phaseâ€Change Materials for Tunable Metasurfaces. Advanced Optical Materials, 2021, 9, 2001243.	7.3	19
126	Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals. Journal of Applied Physics, 2007, 102, 053111.	2.5	18

#	Article	IF	Citations
127	Core/Shell Magic-Sized CdSe Nanocrystals. Nano Letters, 2021, 21, 7651-7658.	9.1	16
128	Control of Thermal Emission by Selective Heating of Periodic Structures. Physical Review Letters, 2010, 104, 043901.	7.8	15
129	Identifying reactive organo-selenium precursors in the synthesis of CdSe nanoplatelets. Chemical Communications, 2018, 54, 11789-11792.	4.1	15
130	3D electrohydrodynamic printing and characterisation of highly conductive gold nanowalls. Nanoscale, 2020, 12, 20158-20164.	5.6	15
131	Substrate Selection for Full Exploitation of Organic Semiconductor Films: Epitaxial Rubrene on βâ€Alanine Single Crystals. Advanced Materials Interfaces, 2015, 2, 1500423.	3.7	14
132	Polarization Multiplexing of Fluorescent Emission Using Multiresonant Plasmonic Antennas. ACS Nano, 2017, 11, 12167-12173.	14.6	14
133	Two-Dimensional Drexhage Experiment for Electric- and Magnetic-Dipole Sources on Plasmonic Interfaces. Physical Review Letters, 2018, 121, 113601.	7.8	14
134	Multispectral quantum-dot photodetectors. Nature Photonics, 2019, 13, 230-232.	31.4	14
135	Micropattern Deposition of Colloidal Semiconductor Nanocrystals by Aerodynamic Focusing. Aerosol Science and Technology, 2010, 44, 55-60.	3.1	10
136	Impact Dynamics of Colloidal Quantum Dot Solids. Langmuir, 2011, 27, 12677-12683.	3.5	8
137	Freeform Electronic and Photonic Landscapes in Hexagonal Boron Nitride. Nano Letters, 2021, 21, 8175-8181.	9.1	8
138	Synthetic approaches toward tungsten photonic crystals for thermal emission. , 2005, 6005, 9.		7
139	Silicon life forms. Nature, 2007, 446, 146-147.	27.8	7
140	Determining the Structure–Property Relationships of Quasi-Two-Dimensional Semiconductor Nanoplatelets. Journal of Physical Chemistry C, 2021, 125, 4820-4827.	3.1	7
141	Measurement of Raman Optical Activity with High-Frequency Polarization Modulation. Journal of Physical Chemistry A, 2021, 125, 8132-8139.	2.5	7
142	Role of Gain in Fabry–Pérot Surface Plasmon Polariton Lasers. ACS Photonics, 0, , .	6.6	7
143	Single-molecule nanophotonics in solids. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 48, 169-174.	3.5	6
144	Polarization-based colour tuning of mixed colloidal quantum-dot thin films using direct patterning. Nanoscale, 2022, 14, 4929-4934.	5.6	5

#	Article	IF	Citations
145	Defect-Tolerant Plasmonic Elliptical Resonators for Long-Range Energy Transfer. ACS Nano, 2019, 13, 9048-9056.	14.6	4
146	Compact Plasmonic Distributed-Feedback Lasers as Dark Sources of Surface Plasmon Polaritons. ACS Nano, 2021, 15, 9935-9944.	14.6	4
147	Single-Pulse Measurement of Orbital Angular Momentum Generated by Microring Lasers. ACS Nano, 2021, , .	14.6	4
148	Template Stripping of Perovskite Thin Films for Dry Interfacing and Surface Structuring. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26601-26606.	8.0	2
149	Anisotropic Magnetic Resonance in Random Nanocrystal Quantum Dot Ensembles. ACS Omega, 2020, 5, 11333-11341.	3.5	2
150	Phase transitions in germanium telluride nanoparticle phase-change materials studied by temperature-resolved x-ray diffraction. Journal of Applied Physics, 2021, 129, 095102.	2.5	2
151	Active Mode Switching in Plasmonic Microlasers by Spatial Control of Optical Gain. Nano Letters, 2021, 21, 8952-8959.	9.1	2
152	Inverse design and realization of an optimized photonic multilayer for thermophotovoltaics. OSA Continuum, 2021, 4, 3254.	1.8	2
153	The role of stress in the time-dependent optical response of silicon photonic band gap crystals. Applied Physics Letters, 2009, 95, 051910.	3.3	1
154	Back-reflector design in thin-film silicon solar cells by rigorous 3D light propagation modeling. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2014, 33, 1282-1295.	0.9	1
155	The Potential of Combining Thermal Scanning Probes and Phaseâ€Change Materials for Tunable Metasurfaces (Advanced Optical Materials 2/2021). Advanced Optical Materials, 2021, 9, 2170008.	7.3	1
156	Nanophotonic Approach to Study Excited-State Dynamics in Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 4145-4151.	4.6	1
157	<title>Size-dependent spectroscopy and photodynamics of some II-VI semiconductor nanocrystallites (quantum dots)</title> ., 1993, 1861, 280.		0
158	Ultrafast switching of Si inverse opal photonic band gap crystals. , 2007, , .		0
159	Chiral Plasmonic Films and Nanoparticles. , 2013, , .		0
160	Correction to Observation of Thermal Beaming from Tungsten and Molybdenum Bull's Eyes. ACS Photonics, 2016, 3, 2003-2003.	6.6	0
161	Nanopatterning of Phase-Change Material Thin Films For Tunable Photonics. , 2021, , .		0
162	Quantum Dot Photonic Crystals. Nanostructure Science and Technology, 2003, , 239-260.	0.1	0

#	Article	IF	Citations
163	Template-Stripped Plasmonic Films For Photovoltaics. , 2012, , .		O
164	Chiral Plasmonic Tips and Colloidal Nanoparticles. , 2018, , .		0
165	Bright Triplet Emission from Lead Halide Perovskite Nanocrystals. , 0, , .		O
166	Synthesis and Isolation of Discrete-Growing CdSe Nanocrystals. , 0, , .		0
167	Photoluminescence Excitation Spectroscopy on Individual Quantum Emitters. , 0, , .		O
168	Bright Triplet Emission from Lead Halide Perovskite Nanocrystals. , 0, , .		0
169	Synthesis and Isolation of Discrete-Growing CdSe Nanocrystals. , 0, , .		O