Sebastian Bonardd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4198533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recyclable, Immobilized Transitionâ€Metal Photocatalysts. Advanced Synthesis and Catalysis, 2022, 364, 2-17.	4.3	11
2	Ferrocene-modified dendrimers as support of copper nanoparticles: evaluation of the catalytic activity for the decomposition of ammonium perchlorate. Materials Today Chemistry, 2022, 23, 100631.	3.5	9
3	Biomass-derived isosorbide-based thermoresponsive hydrogel for drug delivery. Soft Matter, 2022, 18, 4963-4972.	2.7	6
4	Molecular Weight Enables Fine-Tuning the Thermal and Dielectric Properties of Polymethacrylates Bearing Sulfonyl and Nitrile Groups as Dipolar Entities. Polymers, 2021, 13, 317.	4.5	3
5	Novel Polyelectrolytes Obtained by Direct Alkylation and Ion Replacement of a New Aromatic Polyamide Copolymer Bearing Pyridinyl Pendant Groups. Polymers, 2021, 13, 1993.	4.5	7
6	A facile approach for tuning optical and surface properties of novel biobased Alginate/POTE handleable films via solvent vapor exposure. International Journal of Biological Macromolecules, 2021, 193, 258-268.	7.5	3
7	Efficient Oneâ€Pot Preparation of Thermoresponsive Polyurethanes with Lower Critical Solution Temperatures. ChemPlusChem, 2021, 86, 1570-1576.	2.8	2
8	Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers, 2021, 13, 4404.	4.5	6
9	Photo-active chitosan-based hybrid films. European Polymer Journal, 2020, 122, 109373.	5.4	5
10	Doped Poly(3-hexylthiophene) Coatings onto Chitosan: A Novel Approach for Developing a Bio-Based Flexible Electronic. ACS Applied Materials & Interfaces, 2020, 12, 13275-13286.	8.0	22
11	Optical, morphological and photocatalytic properties of biobased tractable films of chitosan/donor-acceptor polymer blends. Carbohydrate Polymers, 2020, 249, 116822.	10.2	8
12	Increasing the temperature range of dipolar glass polymers through copolymerization: A first approach to dipolar glass copolymers. Polymer, 2020, 203, 122765.	3.8	9
13	Physicochemical properties of L-alpha dipalmitoyl phosphatidylcholine large unilamellar vesicles: Effect of hydrophobic block (PLA/PCL) of amphipathic diblock copolymers. Chemistry and Physics of Lipids, 2020, 230, 104927.	3.2	4
14	Exploring the Effect of the Irradiation Time on Photosensitized Dendrimer-Based Nanoaggregates for Potential Applications in Light-Driven Water Photoreduction. Nanomaterials, 2019, 9, 1316.	4.1	5
15	New poly(itaconate)s with bulky pendant groups as candidates for "all-polymer―dielectrics. Reactive and Functional Polymers, 2019, 140, 1-13.	4.1	10
16	Dipolar Glass Polymers Containing Polarizable Groups as Dielectric Materials for Energy Storage Applications. A Minireview. Polymers, 2019, 11, 317.	4.5	43
17	Synthesis of new poly(itaconate)s containing nitrile groups as high dipolar moment entities for the development of dipolar glass polymers with increased dielectric constant. Thermal and dielectric characterization. European Polymer Journal, 2019, 114, 19-31.	5.4	20
18	A novel environmentally friendly method in solid phase for in situ synthesis of chitosan-gold bionanocomposites with catalytic applications. Carbohydrate Polymers, 2019, 207, 533-541.	10.2	45

SEBASTIAN BONARDD

#	Article	IF	CITATIONS
19	Novel 3D copper nanoparticles/chitosan/nanoporous alumina (CCSA) membranes with catalytic activity. Characterization and performance in the reduction of methylene blue. Journal of Cleaner Production, 2019, 210, 811-820.	9.3	16
20	In situ preparation of film and hydrogel bio-nanocomposites of chitosan/fluorescein-copper with catalytic activity. Carbohydrate Polymers, 2018, 180, 200-208.	10.2	24
21	Polyitaconates: A New Family of "All-Polymer―Dielectrics. ACS Applied Materials & Interfaces, 2018, 10, 38476-38492.	8.0	28
22	Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydrate Polymers, 2018, 199, 20-30.	10.2	57
23	Optical and electronic activities of biobased films of chitosan/POTE containing gold nanoparticles: Experimental and theoretical analyses. European Polymer Journal, 2018, 108, 235-249.	5.4	8
24	Biobased Chitosan Nanocomposite Films Containing Gold Nanoparticles: Obtainment, Characterization, and Catalytic Activity Assessment. ACS Applied Materials & Interfaces, 2017, 9, 16561-16570.	8.0	31
25	An experimental and theoretical comparative study of the entrapment and release of dexamethasone from micellar and vesicular aggregates of PAMAM-PCL dendrimers. European Polymer Journal, 2017, 93, 507-520.	5.4	10
26	The Role of Polymers in the Synthesis of Noble Metal Nanoparticles: A Review. Journal of Nanoscience and Nanotechnology, 2017, 17, 87-114.	0.9	29
27	The Role of Polymers in the Synthesis of Noble Metal Nanoparticles: A Review. Journal of Nanoscience and Nanotechnology, 2017, 17, 87-114.	0.9	5
28	Thermal and morphological behavior of chitosan/PEO blends containing gold nanoparticles. Experimental and theoretical studies. Carbohydrate Polymers, 2016, 144, 315-329.	10.2	33
29	Interfacial behavior of PAMAM-PCL dendrimers and in situ spontaneous formation of gold nanoparticles at the toluene-water and air-water interfaces: Experimental and theoretical studies. European Polymer Journal, 2016, 84, 188-204.	5.4	7
30	Improving the performance of chitosan in the synthesis and stabilization of gold nanoparticles. European Polymer Journal, 2015, 68, 419-431.	5.4	44
31	A facile one-step synthesis of noble metal nanoparticles in DMSO using poly(ethylene) Tj ETQq1 1 0.784314 rgB	T /Qverlock	10 Tf 50 2