Patricia Le-Bail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4198525/publications.pdf

Version: 2024-02-01

411340 651938 1,509 27 20 citations h-index papers

g-index 27 27 27 1363 all docs docs citations times ranked citing authors

25

#	Article	IF	CITATIONS
1	Clean-label techno-functional ingredients for baking products – a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 7461-7476.	5.4	4
2	Substitution of baking powders in a pound cake by an overpressure mixing process; impact on cake properties. Journal of Food Engineering, 2022, 316, 110824.	2.7	7
3	Starch modification through environmentally friendly alternatives: a review. Critical Reviews in Food Science and Nutrition, 2021, 61, 2482-2505.	5.4	92
4	Dual-process of starch modification: Combining ozone and dry heating treatments to modify cassava starch structure and functionality. International Journal of Biological Macromolecules, 2021, 167, 894-905.	3.6	28
5	Pulsed electric fields (PEF) treatment to enhance starch 3D printing application: Effect on structure, properties, and functionality of wheat and cassava starches. Innovative Food Science and Emerging Technologies, 2021, 68, 102602.	2.7	48
6	A Comprehensive Study on the Competition Between Starch and Sucrose on Access of Water During Heating. Starch/Staerke, 2021, 73, 2000245.	1.1	0
7	Thermal technologies to enhance starch performance and starchy products. Current Opinion in Food Science, 2021, 40, 72-80.	4.1	13
8	Preparation of cassava starch hydrogels for application in 3D printing using dry heating treatment (DHT): A prospective study on the effects of DHT and gelatinization conditions. Food Research International, 2020, 128, 108803.	2.9	67
9	Dry heating treatment: A potential tool to improve the wheat starch properties for 3D food printing application. Food Research International, 2020, 137, 109731.	2.9	48
10	Recent advances and future perspective in additive manufacturing of foods based on 3D printing. Current Opinion in Food Science, 2020, 35, 54-64.	4.1	116
11	Hydrogels based on ozonated cassava starch: Effect of ozone processing and gelatinization conditions on enhancing 3D-printing applications. International Journal of Biological Macromolecules, 2019, 138, 1087-1097.	3.6	75
12	A study of cracks in dry cereal products. Food Hydrocolloids, 2019, 94, 528-536.	5.6	2
13	Vitamin B4 as a salt substitute in bread: A challenging and successful new strategy. Sensory perception and acceptability by French consumers. Appetite, 2019, 134, 17-25.	1.8	21
14	Starch in Baked Products., 2018,, 595-632.		5
15	Conformational changes of polymers in model batter systems. Food Hydrocolloids, 2015, 51, 101-107.	5.6	26
16	The role of ingredients on thermal and rheological properties of cake batters and the impact on microcake texture. LWT - Food Science and Technology, 2015, 63, 1171-1178.	2.5	22
17	Understanding the destructuration of starch in water–ionic liquid mixtures. Green Chemistry, 2015, 17, 291-299.	4.6	59
18	Coupling lipophilization and amylose complexation to encapsulate chlorogenic acid. Carbohydrate Polymers, 2012, 90, 152-158.	5.1	43

#	Article	IF	Citations
19	INFLUENCE OF FLAVORING ON THE VISCOELASTIC PROPERTIES OF STARCH GELS DURING GELATION AND LONG-TIME RETROGRADATION. Journal of Texture Studies, 2006, 37, 459-475.	1.1	2
20	Structural and stoichiometric studies of complexes between aroma compounds and amylose. Polymorphic transitions and quantification in amorphous and crystalline areas. Carbohydrate Polymers, 2006, 66, 306-315.	5.1	115
21	Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability. International Journal of Biological Macromolecules, 2005, 35, 1-7.	3.6	146
22	Influence of Physicochemical Interactions between Amylose and Aroma Compounds on the Retention of Aroma in Food-like Matrices. Journal of Agricultural and Food Chemistry, 2002, 50, 7088-7093.	2.4	90
23	Monitoring the crystallization of amylose-lipid complexes during maize starch melting by synchrotron x-ray diffraction. Biopolymers, 1999, 50, 99-110.	1.2	133
24	Characterization of a crosslinked high amylose starch excipient. International Journal of Biological Macromolecules, 1999, 26, 193-200.	3.6	57
25	Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds. Carbohydrate Polymers, 1997, 32, 33-50.	5.1	193
26	Polymorphic Transitions of Amylose-Ethanol Crystalline Complexes Induced by Moisture Exchanges. Starch/Staerke, 1995, 47, 229-232.	1.1	50
27	â€~B' to â€~A' type phase transition in short amylose chains. Carbohydrate Polymers, 1993, 21, 99-104.	5.1	47