Morten O Holmström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4198457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peptide vaccination activating Galectin-3-specific T cells offers a novel means to target Galectin-3-expressing cells in the tumor microenvironment. Oncolmmunology, 2022, 11, 2026020.	2.1	9
2	Patients With Myeloproliferative Neoplasms Harbor High Frequencies of CD8 T Cell-Platelet Aggregates Associated With T Cell Suppression. Frontiers in Immunology, 2022, 13, .	2.2	0
3	Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Science Translational Medicine, 2022, 14, .	5.8	10
4	An immunogenic first-in-human immune modulatory vaccine with PD-L1 and PD-L2 peptides is feasible and shows early signs of efficacy in follicular lymphoma. OncoImmunology, 2021, 10, .	2.1	5
5	Cytotoxic T cells isolated from healthy donors and cancer patients kill TGFβ-expressing cancer cells in a TGFβ-dependent manner. Cellular and Molecular Immunology, 2021, 18, 415-426.	4.8	10
6	Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With CALR-Mutant Chronic Myeloproliferative Neoplasms. Frontiers in Oncology, 2021, 11, 637420.	1.3	29
7	Characterization of TGFβ-specific CD4+T cells through the modulation of TGFβ expression in malignant myeloid cells. Cellular and Molecular Immunology, 2021, 18, 2575-2577.	4.8	5
8	A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nature Medicine, 2021, 27, 2212-2223.	15.2	88
9	Healthy Donors Harbor Memory T Cell Responses to RAS Neo-Antigens. Cancers, 2020, 12, 3045.	1.7	9
10	The metabolic enzyme arginase-2 is a potential target for novel immune modulatory vaccines. Oncolmmunology, 2020, 9, 1771142.	2.1	18
11	Cancer Immune Therapy for Philadelphia Chromosome-Negative Chronic Myeloproliferative Neoplasms. Cancers, 2020, 12, 1763.	1.7	17
12	Evidence of immune elimination, immuno-editing and immune escape in patients with hematological cancer. Cancer Immunology, Immunotherapy, 2020, 69, 315-324.	2.0	12
13	Cancer immune therapy for myeloid malignancies: present and future. Seminars in Immunopathology, 2019, 41, 97-109.	2.8	16
14	Cancer immune therapy for lymphoid malignancies: recent advances. Seminars in Immunopathology, 2019, 41, 111-124.	2.8	15
15	Progression of JAK2-mutant polycythemia vera to CALR-mutant myelofibrosis severely impacts on disease phenotype and response to therapy. Leukemia and Lymphoma, 2019, 60, 3296-3299.	0.6	2
16	High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals. Blood Cancer Journal, 2019, 9, 8.	2.8	27
17	Neo-antigen specific memory T-cell responses in healthy individuals. Oncolmmunology, 2019, 8, e1599640.	2.1	2
18	Perspectives on interferon-alpha in the treatment of polycythemia vera and related myeloproliferative neoplasms: minimal residual disease and cure?. Seminars in Immunopathology, 2019, 41, 5-19.	2.8	71

Morten O Holmström

#	Article	IF	CITATIONS
19	JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation. Leukemia, 2019, 33, 995-1010.	3.3	43
20	Spontaneous T-cell responses against the immune check point programmed-death-ligand 1 (PD-L1) in patients with chronic myeloproliferative neoplasms correlate with disease stage and clinical response. Oncolmmunology, 2018, 7, e1433521.	2.1	30
21	The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncolmmunology, 2018, 7, e1390641.	2.1	33
22	Frequent adaptive immune responses against arginase-1. Oncolmmunology, 2018, 7, e1404215.	2.1	27
23	Sorted peripheral blood cells identify <i>CALR</i> mutations in B- and T-lymphocytes. Leukemia and Lymphoma, 2018, 59, 973-977.	0.6	15
24	Novel Strategies for Peptide-Based Vaccines in Hematological Malignancies. Frontiers in Immunology, 2018, 9, 2264.	2.2	19
25	Spontaneous T-cell responses against Arginase-1 in the chronic myeloproliferative neoplasms relative to disease stage and type of driver mutation. Oncolmmunology, 2018, 7, e1468957.	2.1	15
26	The JAK2V617F and CALR exon 9 mutations are shared immunogenic neoantigens in hematological malignancy. Oncolmmunology, 2017, 6, e1358334.	2.1	10
27	The JAK2V617F mutation is a target for specific T cells in the JAK2V617F-positive myeloproliferative neoplasms. Leukemia, 2017, 31, 495-498.	3.3	51
28	The Danish National Multiple Myeloma Registry. Clinical Epidemiology, 2016, Volume 8, 583-587.	1.5	38
29	Differential Dynamics of CALR Mutant Allele Burden in Myeloproliferative Neoplasms during Interferon Alfa Treatment. PLoS ONE, 2016, 11, e0165336.	1.1	38
30	The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia, 2016, 30, 2413-2416.	3.3	60
31	Ruxolitinib is manageable in patients with myelofibrosis and severe thrombocytopenia: a report on 12 Danish patients. Leukemia and Lymphoma, 2016, 57, 125-128.	0.6	16
32	Causes of early death in multiple myeloma patients who are ineligible for highâ€dose therapy with hematopoietic stem cell support: A study based on the nationwide <scp>D</scp> anish <scp>M</scp> yeloma <scp>D</scp> atabase. American Journal of Hematology, 2015, 90, E73-4.	2.0	44
33	A Heterogeneous Response Pattern to Interferon-alpha2 with Induction of a Significant Decrease in the Calreticulin Mutant Allele Burden in a Subset of Patients with Essential Thrombocythemia and Primary Myelofibrosis. Blood, 2015, 126, 4057-4057.	0.6	0
34	Genetic variants in theP2RX7gene are associated with risk of multiple myeloma. European Journal of Haematology, 2014, 93, 172-174.	1.1	7