
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4198035/publications.pdf Version: 2024-02-01

Δρής Ν Δέβλα

#	Article	IF	CITATIONS
1	B Lymphocytes Accumulate and Proliferate in Human Skin at Sites of Cutaneous Antigen Challenge. Journal of Investigative Dermatology, 2022, 142, 726-731.e4.	0.3	2
2	Aging and frailty immune landscape. Nature Aging, 2022, 2, 280-281.	5.3	1
3	Treating exuberant, non-resolving inflammation in the lung; Implications for acute respiratory distress syndrome and COVID-19. , 2021, 221, 107745.		8
4	Recruitment of inflammatory monocytes by senescent fibroblasts inhibits antigen-specific tissue immunity during human aging. Nature Aging, 2021, 1, 101-113.	5.3	39
5	PD-1 Blockade Modulates Functional Activities of Exhausted-Like T Cell in Patients With Cutaneous Leishmaniasis. Frontiers in Immunology, 2021, 12, 632667.	2.2	16
6	Bacterial genotoxins induce TÂcell senescence. Cell Reports, 2021, 35, 109220.	2.9	20
7	GATA3 induces mitochondrial biogenesis in primary human CD4+ T cells during DNA damage. Nature Communications, 2021, 12, 3379.	5.8	11
8	Induction of T Cell Senescence by Cytokine Induced Bystander Activation. Frontiers in Aging, 2021, 2, .	1.2	6
9	Cellular senescence as a possible link between prostate diseases of the ageing male. Nature Reviews Urology, 2021, 18, 597-610.	1.9	19
10	Transcriptomic landscape of skin lesions in cutaneous leishmaniasis reveals a strong CD8 ⁺ T cell immunosenescence signature linked to immunopathology. Immunology, 2021, 164, 754-765.	2.0	8
11	Vitamin D3 replacement enhances antigen-specific immunity in older adults. Immunotherapy Advances, 2021, 1, .	1.2	18
12	Mitochondrial mass governs the extent of human T cell senescence. Aging Cell, 2020, 19, e13067.	3.0	79
13	Aging immunity may exacerbate COVID-19. Science, 2020, 369, 256-257.	6.0	166
14	Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Frontiers in Immunology, 2020, 11, 583019.	2.2	98
15	The global response to the COVID-19 pandemic: how have immunology societies contributed?. Nature Reviews Immunology, 2020, 20, 594-602.	10.6	17
16	The role of senescent T cells in immunopathology. Aging Cell, 2020, 19, e13272.	3.0	50
17	Can blocking inflammation enhance immunity during aging?. Journal of Allergy and Clinical Immunology, 2020, 145, 1323-1331.	1.5	50
18	Sestrins induce natural killer function in senescent-like CD8+ T cells. Nature Immunology, 2020, 21, 684-694.	7.0	139

#	Article	IF	CITATIONS
19	Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nature Immunology, 2020, 21, 615-625.	7.0	87
20	Compartmentalized cytotoxic immune response leads to distinct pathogenic roles of natural killer and senescent CD8 + T cells in human cutaneous leishmaniasis. Immunology, 2020, 159, 429-440.	2.0	12
21	Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nature Communications, 2019, 10, 2387.	5.8	281
22	Human <scp>CD</scp> 8 ⁺ <scp>EMRA</scp> T cells display a senescenceâ€associated secretory phenotype regulated by p38 <scp>MAPK</scp> . Aging Cell, 2018, 17, e12675.	3.0	161
23	Enhancement of cutaneous immunity during aging by blocking p38 mitogen-activated protein (MAP) kinase–induced inflammation. Journal of Allergy and Clinical Immunology, 2018, 142, 844-856.	1.5	75
24	Circulating Senescent T Cells Are Linked to Systemic Inflammation and Lesion Size During Human Cutaneous Leishmaniasis. Frontiers in Immunology, 2018, 9, 3001.	2.2	28
25	A sestrin-dependent Erk–Jnk–p38 MAPK activation complex inhibits immunity during aging. Nature Immunology, 2017, 18, 354-363.	7.0	223
26	Convergence of Innate and Adaptive Immunity during Human Aging. Frontiers in Immunology, 2016, 7, 445.	2.2	77
27	Senescence of T Lymphocytes: Implications for Enhancing Human Immunity. Trends in Immunology, 2016, 37, 866-876.	2.9	208
28	Killer Cell Lectin-like Receptor G1 Inhibits NK Cell Function through Activation of Adenosine 5′-Monophosphate–Activated Protein Kinase. Journal of Immunology, 2016, 197, 2891-2899.	0.4	76
29	Blockade of PDâ€1 or p38 MAP kinase signaling enhances senescent human CD8 ⁺ Tâ€cell proliferation by distinct pathways. European Journal of Immunology, 2015, 45, 1441-1451.	1.6	108
30	The Characterization of Varicella Zoster Virus–Specific T Cells in Skin and Blood during Aging. Journal of Investigative Dermatology, 2015, 135, 1752-1762.	0.3	86
31	The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nature Immunology, 2014, 15, 965-972.	7.0	243
32	p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. Journal of Clinical Investigation, 2014, 124, 4004-4016.	3.9	285
33	Varicella Zoster–Specific CD4+Foxp3+ T Cells Accumulate after Cutaneous Antigen Challenge in Humans. Journal of Immunology, 2013, 190, 977-986.	0.4	50
34	Properties of end-stage human T cells defined by CD45RA re-expression. Current Opinion in Immunology, 2012, 24, 476-481.	2.4	141
35	Cytomegalovirus infection induces the accumulation of short-lived, multifunctional CD4+ CD45RA+ CD27â~' T cells: the potential involvement of interleukin-7 in this process. Immunology, 2011, 132, 326-339.	2.0	85
36	Reversible Senescence in Human CD4+CD45RA+CD27â^' Memory T Cells. Journal of Immunology, 2011, 187, 2093-2100.	0.4	193

#	Article	IF	CITATIONS
37	Variation of human natural killer cell phenotypes with age: Identification of a unique KLRG1-negative subset. Human Immunology, 2010, 71, 676-681.	1.2	82
38	KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood, 2009, 113, 6619-6628.	0.6	205
39	Decreased TNF-α synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging. Journal of Experimental Medicine, 2009, 206, 1929-1940.	4.2	161
40	KLRG1—more than a marker for T cell senescence. Age, 2009, 31, 285-291.	3.0	149
41	CD28â^' T cells: their role in the age-associated decline of immune function. Trends in Immunology, 2009, 30, 306-312.	2.9	514
42	The kinetics of CD4+Foxp3+ T cell accumulation during a human cutaneous antigen-specific memory response in vivo. Journal of Clinical Investigation, 2008, 118, 3639-3650.	3.9	113
43	Telomerase in T Lymphocytes: Use It and Lose It?. Journal of Immunology, 2007, 178, 6689-6694.	0.4	77
44	The Loss of Telomerase Activity in Highly Differentiated CD8+CD28â^'CD27â^' T Cells Is Associated with Decreased Akt (Ser473) Phosphorylation. Journal of Immunology, 2007, 178, 7710-7719.	0.4	185
45	The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nature Reviews Immunology, 2007, 7, 231-237.	10.6	189
46	Quiescence and functional reprogramming of Epstein-Barr virus (EBV)-specific CD8+ T cells during persistent infection. Blood, 2005, 106, 558-565.	0.6	45
47	Memory T cell homeostasis and senescence during aging. Current Opinion in Immunology, 2005, 17, 480-485.	2.4	201
48	Cytomegalovirus-Specific CD4+ T Cells in Healthy Carriers Are Continuously Driven to Replicative Exhaustion. Journal of Immunology, 2005, 175, 8218-8225.	0.4	267
49	Will telomere erosion lead to a loss of T-cell memory?. Nature Reviews Immunology, 2004, 4, 737-743.	10.6	117
50	The peripheral generation of CD4+ CD25+ regulatory T cells. Immunology, 2003, 109, 319-325.	2.0	98
51	The flow cytometric analysis of telomere length in antigen-specific CD8+ T cells during acute Epstein-Barr virus infection. Blood, 2001, 97, 700-707.	0.6	102
52	The Regulation of Apoptosis and Replicative Senescence in CD8+ T cells From Patients With Viral Infections. Biochemical Society Transactions, 2000, 28, A4-A4.	1.6	0
53	Telomere-dependent senescence. Nature Biotechnology, 1999, 17, 313-313.	9.4	37
54	RGD peptides induce apoptosis by direct caspase-3 activation. Nature, 1999, 397, 534-539.	13.7	404

#	Article	IF	CITATIONS
55	Herbimycin A accelerates the induction of apoptosis following etoposide treatment or Î ³ -irradiation of bcr/abl-positive leukaemia cells. Oncogene, 1998, 16, 1533-1542.	2.6	28
56	Selective migration of highly differentiated primed T cells across human umbilical vein endothelial cells. Biochemical Society Transactions, 1997, 25, 258S-258S.	1.6	5
57	Human CD4+CD45RO+ and CD4+CD45RA+ T cells synergize in response to alloantigens. European Journal of Immunology, 1991, 21, 2517-2522.	1.6	46