
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4198019/publications.pdf Version: 2024-02-01



WALTER LATWOOD

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Human Polyomavirus, JCV, Uses Serotonin Receptors to Infect Cells. Science, 2004, 306, 1380-1383.                                                                                                                   | 12.6 | 417       |
| 2  | Molecular Biology, Epidemiology, and Pathogenesis of Progressive Multifocal Leukoencephalopathy,<br>the JC Virus-Induced Demyelinating Disease of the Human Brain. Clinical Microbiology Reviews, 2012,<br>25, 471-506. | 13.6 | 337       |
| 3  | JC Virus Enters Human Glial Cells by Clathrin-Dependent Receptor-Mediated Endocytosis. Journal of<br>Virology, 2000, 74, 2288-2292.                                                                                     | 3.4  | 224       |
| 4  | Leflunomide for Polyomavirus Type BK Nephropathy. New England Journal of Medicine, 2005, 352, 1157-1158.                                                                                                                | 27.0 | 220       |
| 5  | Treatment of Renal Allograft Polyoma BK Virus Infection with Leflunomide. Transplantation, 2006, 81,<br>704-710.                                                                                                        | 1.0  | 199       |
| 6  | Taxonomical developments in the family Polyomaviridae. Archives of Virology, 2011, 156, 1627-1634.                                                                                                                      | 2.1  | 171       |
| 7  | Structure-Function Analysis of the Human JC Polyomavirus Establishes the LSTc Pentasaccharide as a<br>Functional Receptor Motif. Cell Host and Microbe, 2010, 8, 309-319.                                               | 11.0 | 167       |
| 8  | Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human<br>papillomavirus. Proceedings of the National Academy of Sciences of the United States of America, 2013,<br>110, 7452-7457.      | 7.1  | 165       |
| 9  | Infection of Clial Cells by the Human Polyomavirus JC Is Mediated by an N-Linked Glycoprotein<br>Containing Terminal α(2-6)-Linked Sialic Acids. Journal of Virology, 1998, 72, 4643-4649.                              | 3.4  | 154       |
| 10 | Infection of Vero Cells by BK Virus Is Dependent on Caveolae. Journal of Virology, 2004, 78, 11583-11590.                                                                                                               | 3.4  | 128       |
| 11 | Interaction of the human polyomavirus, JCV, with human B-lymphocytes. Virology, 1992, 190, 716-723.                                                                                                                     | 2.4  | 110       |
| 12 | Oligosaccharides as Receptors for JC Virus. Journal of Virology, 2002, 76, 12992-13000.                                                                                                                                 | 3.4  | 99        |
| 13 | The Polyomaviridae: Contributions of virus structure to our understanding of virus receptors and infectious entry. Virology, 2009, 384, 389-399.                                                                        | 2.4  | 99        |
| 14 | JC Virus: An oncogenic virus in animals and humans?. Seminars in Cancer Biology, 2009, 19, 261-269.                                                                                                                     | 9.6  | 98        |
| 15 | A JC Virus-Induced Signal Is Required for Infection of Glial Cells by a Clathrin- and eps15-Dependent<br>Pathway. Journal of Virology, 2004, 78, 250-256.                                                               | 3.4  | 95        |
| 16 | BiP and Multiple DNAJ Molecular Chaperones in the Endoplasmic Reticulum Are Required for Efficient<br>Simian Virus 40 Infection. MBio, 2011, 2, e00101-11.                                                              | 4.1  | 91        |
| 17 | JC Virus binds to primary human glial cells, tonsillar stromal cells, and B-lymphocytes, but not to T<br>lymphocytes. Journal of NeuroVirology, 2000, 6, 127-136.                                                       | 2.1  | 79        |
| 18 | Human α-Defensins Inhibit BK Virus Infection by Aggregating Virions and Blocking Binding to Host Cells.<br>Journal of Biological Chemistry, 2008, 283, 31125-31132.                                                     | 3.4  | 77        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | An N-Linked Glycoprotein with α(2,3)-Linked Sialic Acid Is a Receptor for BK Virus. Journal of Virology, 2005, 79, 14442-14445.                                                                                    | 3.4 | 75        |
| 20 | Contrasting Roles of Endosomal pH and the Cytoskeleton in Infection of Human Glial Cells by JC Virus and Simian Virus 40. Journal of Virology, 2003, 77, 1347-1356.                                                | 3.4 | 74        |
| 21 | JC Polyomavirus Uses Extracellular Vesicles To Infect Target Cells. MBio, 2019, 10, .                                                                                                                              | 4.1 | 71        |
| 22 | A Structure-Guided Mutation in the Major Capsid Protein Retargets BK Polyomavirus. PLoS Pathogens, 2013, 9, e1003688.                                                                                              | 4.7 | 70        |
| 23 | 5-HT <sub>2</sub> Receptors Facilitate JC Polyomavirus Entry. Journal of Virology, 2013, 87, 13490-13498.                                                                                                          | 3.4 | 66        |
| 24 | A Retrograde Trafficking Inhibitor of Ricin and Shiga-Like Toxins Inhibits Infection of Cells by Human and Monkey Polyomaviruses. MBio, 2013, 4, e00729-13.                                                        | 4.1 | 64        |
| 25 | Differential Distribution of the JC Virus Receptor-Type Sialic Acid in Normal Human Tissues. American<br>Journal of Pathology, 2004, 164, 419-428.                                                                 | 3.8 | 62        |
| 26 | The biology of JC polyomavirus. Biological Chemistry, 2017, 398, 839-855.                                                                                                                                          | 2.5 | 58        |
| 27 | HIV Type 1 Infection of Human Astrocytes Is Restricted by Inefficient Viral Entry. AIDS Research and Human Retroviruses, 2001, 17, 1133-1142.                                                                      | 1.1 | 56        |
| 28 | Direct Correlation between Sialic Acid Binding and Infection of Cells by Two Human Polyomaviruses<br>(JC Virus and BK Virus). Journal of Virology, 2008, 82, 2560-2564.                                            | 3.4 | 55        |
| 29 | The VP1 subunit of JC polyomavirus recapitulates early events in viral trafficking and is a novel tool to study polyomavirus entry. Virology, 2012, 428, 30-40.                                                    | 2.4 | 55        |
| 30 | JC Virus infected choroid plexus epithelial cells produce extracellular vesicles that infect glial cells independently of the virus attachment receptor. PLoS Pathogens, 2020, 16, e1008371.                       | 4.7 | 54        |
| 31 | The Greater Affinity of JC Polyomavirus Capsid for α2,6-Linked Lactoseries Tetrasaccharide c than for<br>Other Sialylated Glycans Is a Major Determinant of Infectivity. Journal of Virology, 2015, 89, 6364-6375. | 3.4 | 52        |
| 32 | Progressive Multifocal Leukoencephalopathy-Associated Mutations in the JC Polyomavirus Capsid<br>Disrupt Lactoseries Tetrasaccharide c Binding. MBio, 2013, 4, e00247-13.                                          | 4.1 | 48        |
| 33 | Role of N-Linked Glycosylation of the 5-HT <sub>2A</sub> Receptor in JC Virus Infection. Journal of Virology, 2010, 84, 9677-9684.                                                                                 | 3.4 | 47        |
| 34 | Identification of Amino Acid Residues in BK Virus VP1 That Are Critical for Viability and Growth.<br>Journal of Virology, 2007, 81, 11798-11808.                                                                   | 3.4 | 45        |
| 35 | Decreased function of survival motor neuron protein impairs endocytic pathways. Proceedings of the<br>National Academy of Sciences of the United States of America, 2016, 113, E4377-86.                           | 7.1 | 45        |
| 36 | The Human Polyomavirus, Jcv, Does Not Share Receptor Specificity with SV40 on Human Glial Cells.<br>Journal of NeuroVirology, 1998, 4, 49-58.                                                                      | 2.1 | 44        |

| #  | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | JC Polyomavirus Infection of Primary Human Renal Epithelial Cells Is Controlled by a Type I IFN-Induced Response. MBio, 2016, 7, .                                                                                                                                                      | 4.1 | 44        |
| 38 | Evaluation of the role of cytokine activation in the multiplication of JC virus (JCV) in human fetal glial cells. Journal of NeuroVirology, 1995, 1, 40-49.                                                                                                                             | 2.1 | 43        |
| 39 | NFAT4 Is Required for JC Virus Infection of Glial Cells. Journal of Virology, 2006, 80, 12079-12085.                                                                                                                                                                                    | 3.4 | 40        |
| 40 | Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses. Bioorganic and Medicinal Chemistry, 2014, 22, 4836-4847.                                                                                      | 3.0 | 40        |
| 41 | JC polyomavirus attachment, entry, and trafficking: unlocking the keys to a fatal infection. Journal of NeuroVirology, 2015, 21, 601-613.                                                                                                                                               | 2.1 | 38        |
| 42 | CD4/CXCR4-independent infection of human astrocytes by a T-tropic strain of HIV-1. Journal of NeuroVirology, 2001, 7, 155-162.                                                                                                                                                          | 2.1 | 37        |
| 43 | A combination of low-dose chlorpromazine and neutralizing antibodies inhibits the spread of JC virus (JCV) in a tissue culture model: Implications for prophylactic and therapeutic treatment of progressive multifocal leukencephalopathy. Journal of NeuroVirology, 2001, 7, 307-310. | 2.1 | 36        |
| 44 | Modeling a Sialic Acid Binding Pocket in the External Loops of JC Virus VP1. Journal of Biological<br>Chemistry, 2004, 279, 49172-49176.                                                                                                                                                | 3.4 | 36        |
| 45 | Virus receptors in the human central nervous system. Journal of NeuroVirology, 2001, 7, 187-195.                                                                                                                                                                                        | 2.1 | 34        |
| 46 | Early Events in the Life Cycle of JC Virus as Potential Therapeutic Targets for the Treatment of Progressive Multifocal Leukoencephalopathy. Journal of NeuroVirology, 2003, 9, 32-37.                                                                                                  | 2.1 | 32        |
| 47 | The role of sialic acid in human polyomavirus infections. Glycoconjugate Journal, 2006, 23, 19-26.                                                                                                                                                                                      | 2.7 | 32        |
| 48 | Human Polyomavirus Receptor Distribution in Brain Parenchyma Contrasts with Receptor<br>Distribution in Kidney and Choroid Plexus. American Journal of Pathology, 2015, 185, 2246-2258.                                                                                                 | 3.8 | 32        |
| 49 | Progressive Multifocal Leukoencephalopathy: Endemic Viruses and Lethal Brain Disease. Annual Review of Virology, 2017, 4, 349-367.                                                                                                                                                      | 6.7 | 31        |
| 50 | Construction of a Novel JCV/SV40 Hybrid Virus (JCSV) Reveals a Role for the JCV Capsid in Viral<br>Tropism. Virology, 2002, 300, 282-290.                                                                                                                                               | 2.4 | 29        |
| 51 | Fifty Years of JC Polyomavirus: A Brief Overview and Remaining Questions. Viruses, 2020, 12, 969.                                                                                                                                                                                       | 3.3 | 28        |
| 52 | The Human Alpha Defensin HD5 Neutralizes JC Polyomavirus Infection by Reducing Endoplasmic<br>Reticulum Traffic and Stabilizing the Viral Capsid. Journal of Virology, 2014, 88, 948-960.                                                                                               | 3.4 | 27        |
| 53 | The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4. Virology, 2011, 411, 142-152.                                                                                  | 2.4 | 26        |
|    |                                                                                                                                                                                                                                                                                         |     |           |

Propagation and Assay of the JC Virus. , 2001, 165, 9-17.

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Susceptibility of Primary Human Choroid Plexus Epithelial Cells and Meningeal Cells to Infection by JC<br>Virus. Journal of Virology, 2018, 92, .                                                                 | 3.4 | 24        |
| 56 | Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism. Virology, 2003, 314, 101-109.                                    | 2.4 | 22        |
| 57 | MEK inhibitors reduce cellular expression of ACE2, pERK, pRb while stimulating NK-mediated cytotoxicity and attenuating inflammatory cytokines relevant to SARS-CoV-2 infection. Oncotarget, 2020, 11, 4201-4223. | 1.8 | 22        |
| 58 | Modulation of PML protein expression regulates JCV infection. Virology, 2009, 390, 279-288.                                                                                                                       | 2.4 | 21        |
| 59 | Interaction between Simian Virus 40 Major Capsid Protein VP1 and Cell Surface Ganglioside GM1<br>Triggers Vacuole Formation. MBio, 2016, 7, e00297.                                                               | 4.1 | 21        |
| 60 | Polyomavirus nephropathy in kidney transplantation. Progress in Transplantation, 2004, 14, 130-142.                                                                                                               | 0.7 | 21        |
| 61 | Transcriptional Regulation of BK Virus by Nuclear Factor of Activated T Cells. Journal of Virology, 2010, 84, 1722-1730.                                                                                          | 3.4 | 20        |
| 62 | Trichodysplasia spinulosa-Associated Polyomavirus Uses a Displaced Binding Site on VP1 to Engage<br>Sialylated Glycolipids. PLoS Pathogens, 2015, 11, e1005112.                                                   | 4.7 | 20        |
| 63 | Genetic and Functional Dissection of the Role of Individual 5-HT2 Receptors as Entry Receptors for JC Polyomavirus. Cell Reports, 2019, 27, 1960-1966.e6.                                                         | 6.4 | 20        |
| 64 | Polyomavirus Nephropathy in Kidney Transplantation. Progress in Transplantation, 2004, 14, 130-142.                                                                                                               | 0.7 | 19        |
| 65 | Pseudovirus mimics cell entry and trafficking of the human polyomavirus JCPyV. Virus Research, 2013, 178, 281-286.                                                                                                | 2.2 | 17        |
| 66 | Modulation of a Pore in the Capsid of JC Polyomavirus Reduces Infectivity and Prevents Exposure of the Minor Capsid Proteins. Journal of Virology, 2015, 89, 3910-3921.                                           | 3.4 | 17        |
| 67 | Virus Receptors and Tropism. Advances in Experimental Medicine and Biology, 2006, 577, 60-72.                                                                                                                     | 1.6 | 15        |
| 68 | Host cell autophagy promotes BK virus infection. Virology, 2014, 456-457, 87-95.                                                                                                                                  | 2.4 | 15        |
| 69 | Nuclear factor of activated T-cells (NFAT) plays a role in SV40 infection. Virology, 2008, 372, 48-55.                                                                                                            | 2.4 | 13        |
| 70 | Cellular Receptors for the Polyomaviruses. , 0, , 179-196.                                                                                                                                                        |     | 9         |
| 71 | Gallic acid-based small-molecule inhibitors of JC and BK polyomaviral infection. Virus Research, 2014, 189, 280-285.                                                                                              | 2.2 | 9         |
| 72 | Smallâ€molecule inhibitors of JC polyomavirus infection. Journal of Peptide Science, 2015, 21, 236-242.                                                                                                           | 1.4 | 9         |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Phosphoinositide $3\hat{\epsilon}^2$ -Kinase Î <sup>3</sup> Facilitates Polyomavirus Infection. Viruses, 2020, 12, 1190.                                                              | 3.3 | 8         |
| 74 | Glial cells as targets of viral infection in the human central nervous system. Progress in Brain Research, 2001, 132, 721-735.                                                        | 1.4 | 7         |
| 75 | Microarray analysis of glial cells resistant to JCV infection suggests a correlation between viral infection and inflammatory cytokine gene expression. Virology, 2007, 366, 394-404. | 2.4 | 7         |
| 76 | Adipocyte Plasma Membrane Protein (APMAP) promotes JC Virus (JCPyV) infection in human glial cells.<br>Virology, 2020, 548, 17-24.                                                    | 2.4 | 7         |
| 77 | Complexities of JC Polyomavirus Receptor-Dependent and -Independent Mechanisms of Infection.<br>Viruses, 2022, 14, 1130.                                                              | 3.3 | 7         |
| 78 | Teriflunomide Inhibits JCPyV Infection and Spread in Glial Cells and Choroid Plexus Epithelial Cells.<br>International Journal of Molecular Sciences, 2021, 22, 9809.                 | 4.1 | 6         |
| 79 | Genotypes, Archetypes, and Tandem Repeats in the Molecular Epidemiology and Pathogenesis of JC Virus<br>Induced Disease. Journal of NeuroVirology, 2003, 9, 519-521.                  | 2.1 | 5         |
| 80 | Control of Archetype BK Polyomavirus MicroRNA Expression. Journal of Virology, 2020, 95, .                                                                                            | 3.4 | 5         |
| 81 | Biogenesis of JC polyomavirus associated extracellular vesicles. , 2022, 1, .                                                                                                         |     | 5         |
| 82 | Reining in Polyoma Virus Associated Nephropathy: Design and Characterization of a Template<br>Mimicking BK Viral Coat Protein Cellular Binding. Biochemistry, 2012, 51, 8092-8099.    | 2.5 | 1         |
| 83 | Early events controlling infection of cells by human polyomaviruses. Journal of NeuroVirology, 2004, 10, 24-24.                                                                       | 2.1 | 0         |