
Ian M C Dixon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4197864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excessive Tumor Necrosis Factor Activation After Infarction Contributes to Susceptibility of Myocardial Rupture and Left Ventricular Dysfunction. Circulation, 2004, 110, 3221-3228.	1.6	242
2	Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: Expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Developmental Dynamics, 2010, 239, 1573-1584.	1.8	226
3	Elevation of Expression of Smads 2, 3, and 4, Decorin and TGF-βin the Chronic Phase of Myocardial Infarct Scar Healing. Journal of Molecular and Cellular Cardiology, 1999, 31, 667-678.	1.9	218
4	K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2931-H2939.	3.2	193
5	Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death and Disease, 2015, 6, e1696-e1696.	6.3	166
6	Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H3020-H3030.	3.2	148
7	Role of extracellular matrix proteins in heart function. Molecular and Cellular Biochemistry, 1993, 129, 101-120.	3.1	142
8	Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1685-H1696.	3.2	134
9	The basic helix–loop–helix transcription factor scleraxis regulates fibroblast collagen synthesis. Journal of Molecular and Cellular Cardiology, 2009, 47, 188-195.	1.9	106
10	Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death and Disease, 2012, 3, e330-e330.	6.3	104
11	Periostin in cardiovascular disease and development: a tale of two distinct roles. Basic Research in Cardiology, 2018, 113, 1.	5.9	101
12	Autophagy and the unfolded protein response promote profibrotic effects of TGF-β ₁ in human lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L493-L504.	2.9	100
13	Modification of the extracellular matrix following myocardial infarction monitored by FTIR spectroscopy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1996, 1315, 73-77.	3.8	99
14	Expression of G _{ql̂±} and PLC-l̂² in Scar and Border Tissue in Heart Failure Due to Myocardial Infarction. Circulation, 1998, 97, 892-899.	1.6	92
15	Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1071-H1080.	3.2	80
16	Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovascular Research, 2005, 65, 782-792.	3.8	74
17	Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1282-H1290.	3.2	69
18	Effect of ramipril and losartan on collagen expression in right and left heart after myocardial infarction. Molecular and Cellular Biochemistry, 1996, 165, 31-45.	3.1	66

#	Article	IF	CITATIONS
19	Cardiac Collagen Remodeling in the Cardiomyopathic Syrian Hamster and the Effect of Losartan. Journal of Molecular and Cellular Cardiology, 1997, 29, 1837-1850.	1.9	66
20	High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. Journal of Molecular and Cellular Cardiology, 2007, 42, 222-233.	1.9	66
21	Cardiotrophin-1: expression in experimental myocardial infarction and potential role in post-MI wound healing. Molecular and Cellular Biochemistry, 2003, 254, 247-256.	3.1	62
22	Fourier transform infrared evaluation of microscopic scarring in the cardiomyopathic heart: Effect of chronic AT1 suppression. Analytical Biochemistry, 2003, 316, 232-242.	2.4	59
23	Assessment of donor heart viability during ex vivo heart perfusion. Canadian Journal of Physiology and Pharmacology, 2015, 93, 893-901.	1.4	58
24	Physiologic Changes in the Heart Following Cessation of Mechanical Ventilation in a Porcine Model of Donation After Circulatory Death: Implications for Cardiac Transplantation. American Journal of Transplantation, 2016, 16, 783-793.	4.7	57
25	Distribution of Collagen Deposition in Cardiomyopathic Hamster Hearts Determined by Infrared Microscopy. Cardiovascular Pathology, 1999, 8, 41-47.	1.6	54
26	Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility. American Journal of Physiology - Cell Physiology, 2011, 300, C176-C186.	4.6	53
27	Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget, 2016, 7, 78516-78531.	1.8	52
28	Reprogramming and Carcinogenesis—Parallels and Distinctions. International Review of Cell and Molecular Biology, 2014, 308, 167-203.	3.2	48
29	Autophagy and Heart Disease: Implications for Cardiac Ischemia- Reperfusion Damage. Current Molecular Medicine, 2014, 14, 616-629.	1.3	45
30	Increased expression and cell surface localization of MT1-MMP plays a role in stimulation of MMP-2 activity by leptin in neonatal rat cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology, 2008, 44, 874-881.	1.9	43
31	Alteration of collagenous protein profile in congestive heart failure secondary to myocardial infarction. Molecular and Cellular Biochemistry, 1993, 129, 121-131.	3.1	42
32	Effect of chronic AT1 receptor blockade on cardiac Smad overexpression in hereditary cardiomyopathic hamsters. Cardiovascular Research, 2000, 46, 286-297.	3.8	42
33	The participation of the Na+–Ca2+ exchanger in primary cardiac myofibroblast migration, contraction, and proliferation. Journal of Cellular Physiology, 2007, 213, 540-551.	4.1	41
34	The Ski/Zeb2/Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype. Journal of Cell Science, 2014, 127, 40-9.	2.0	41
35	Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes. Diabetes Research and Clinical Practice, 1996, 30, S113-S122.	2.8	40
36	c-Ski, Smurf2, and Arkadia as regulators of TGF-Î ² signaling: new targets for managing myofibroblast function and cardiac fibrosisThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba Canadian Journal of Physiology and Pharmacology, 2009, 87, 764-772.	1.4	40

#	Article	IF	CITATIONS
37	TGFβ ₁ regulates Scleraxis expression in primary cardiac myofibroblasts by a Smad-independent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H239-H249.	3.2	40
38	Autophagy regulates trans fatty acid-mediated apoptosis in primary cardiac myofibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 2274-2286.	4.1	39
39	An Improved Method of Maintaining Primary Murine Cardiac Fibroblasts in Two-Dimensional Cell Culture. Scientific Reports, 2019, 9, 12889.	3.3	39
40	Antiproliferative and antifibrotic effects of mimosine on adult cardiac fibroblasts1Previously published in abstract form: Circulation 94(8) (1996) I 355.1. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1448, 51-60.	4.1	38
41	Induction of protein synthesis in cardiac fibroblasts by cardiotrophin-1: integration of multiple signaling pathways. Cardiovascular Research, 2003, 60, 365-375.	3.8	38
42	Myocardin regulates mitochondrial calcium homeostasis and prevents permeability transition. Cell Death and Differentiation, 2018, 25, 1732-1748.	11.2	38
43	Title is missing!. Molecular and Cellular Biochemistry, 1998, 188, 91-101.	3.1	37
44	Impact of Reperfusion Calcium and pH on the Resuscitation of Hearts Donated After Circulatory Death. Annals of Thoracic Surgery, 2017, 103, 122-130.	1.3	36
45	SnoN as a novel negative regulator of TGF-β/Smad signaling: a target for tailoring organ fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H75-H82.	3.2	34
46	Regulation of cardiac sarcolemmal Ca2+ channels and Ca2+ transporters by thyroid hormone. Molecular and Cellular Biochemistry, 1993, 129, 145-159.	3.1	33
47	Differential and combined effects of cardiotrophin-1 and TGF-β1 on cardiac myofibroblast proliferation and contraction. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1053-H1064.	3.2	33
48	Structural organization of the human cardiac α-myosin heavy chain gene (MYH6). Genomics, 1993, 18, 505-509.	2.9	31
49	Avoidance of Profound Hypothermia During Initial Reperfusion Improves the Functional Recovery of Hearts Donated After Circulatory Death. American Journal of Transplantation, 2016, 16, 773-782.	4.7	31
50	Differential changes in cardiac myofibrillar and sarcoplasmic reticular gene expression in alloxan-induced diabetes. Molecular and Cellular Biochemistry, 1999, 200, 15-25.	3.1	30
51	Restraining acute infarct expansion decreases collagenase activity in borderzone myocardium. Annals of Thoracic Surgery, 2001, 72, 1950-1956.	1.3	29
52	Role of myosin light chain kinase in cardiotrophin-1-induced cardiac myofibroblast cell migration. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H514-H522.	3.2	28
53	Differential Alterations in Left and Right Ventricular G-Proteins in Congestive Heart Failure due to Myocardial Infarction. Journal of Molecular and Cellular Cardiology, 1998, 30, 2153-2163.	1.9	26
54	Steroids Limit Myocardial Edema During ExÂVivo Perfusion of Hearts Donated After Circulatory Death. Annals of Thoracic Surgery, 2018, 105, 1763-1770.	1.3	26

#	Article	IF	CITATIONS
55	Human mesenchymal stem cells express a myofibroblastic phenotype in vitro: comparison to human cardiac myofibroblasts. Molecular and Cellular Biochemistry, 2014, 392, 187-204.	3.1	23
56	Periostin Reexpression in Heart Disease Contributes to Cardiac Interstitial Remodeling by Supporting the Cardiac Myofibroblast Phenotype. Advances in Experimental Medicine and Biology, 2019, 1132, 35-41.	1.6	20
57	SKI activates the Hippo pathway via LIMD1 to inhibit cardiac fibroblast activation. Basic Research in Cardiology, 2021, 116, 25.	5.9	20
58	Effect of angiotensin II on myocardial collagen gene expression. Molecular and Cellular Biochemistry, 1996, 163-164, 231-237.	3.1	19
59	Chronic expression of Ski induces apoptosis and represses autophagy in cardiac myofibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1261-1268.	4.1	18
60	Regulation of cardiac fibroblast MMP2 gene expression by scleraxis. Journal of Molecular and Cellular Cardiology, 2018, 120, 64-73.	1.9	18
61	Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis. Wound Repair and Regeneration, 2021, 29, 667-677.	3.0	14
62	Myocardial Cell Signaling During the Transition to Heart Failure. , 2018, 9, 75-125.		12
63	Ski drives an acute increase in MMP-9 gene expression andÂrelease in primary cardiac myofibroblasts. Physiological Reports, 2018, 6, e13897.	1.7	10
64	The Functional Role of Zinc Finger E Box-Binding Homeobox 2 (Zeb2) in Promoting Cardiac Fibroblast Activation. International Journal of Molecular Sciences, 2018, 19, 3207.	4.1	10
65	Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: Looking beyond TGF-β. Cellular Signalling, 2020, 76, 109802.	3.6	10
66	Boundary conditions and boundary layers for a multi-dimensional relaxation model. Journal of Differential Equations, 2004, 197, 85-117.	2.2	9
67	Collagen remodeling in the extracellular matrix of the cardiomyopathic Syrian hamster heart as assessed by FTIR attenuated total reflectance spectroscopy. Canadian Journal of Chemistry, 1999, 77, 1843-1855.	1.1	8
68	The Soluble Interleukin 6 Receptor Takes Its Place in the Pantheon of Interleukin 6 Signaling Proteins. Hypertension, 2010, 56, 193-195.	2.7	8
69	Title is missing!. Heart Failure Reviews, 1997, 2, 107-116.	3.9	7
70	Mast Cells and Cardiac Fibroblasts. Hypertension, 2011, 58, 142-144.	2.7	7
71	Misoprostol treatment prevents hypoxia-induced cardiac dysfunction through a 14-3-3 and PKA regulatory motif on Bnip3. Cell Death and Disease, 2021, 12, 1105.	6.3	7
72	A High-Lipid Diet Potentiates Left Ventricular Dysfunction in Nitric Oxide Synthase 3-Deficient Mice after Chronic Pressure Overload ,. Journal of Nutrition, 2010, 140, 1438-1444.	2.9	5

#	Article	IF	CITATIONS
73	Help from within: cardioprotective properties of hepatocyte growth factor. Cardiovascular Research, 2001, 51, 4-6.	3.8	4
74	Fibroblasts are coupled to myocytes in heart muscle by nanotubes: a bigger and better syncytium?. Cardiovascular Research, 2011, 92, 5-6.	3.8	4
75	Cardiac myofibroblasts: cells out of balance. A new thematic series. Fibrogenesis and Tissue Repair, 2012, 5, 14.	3.4	4
76	Cardiac Extracellular Matrix and its Role in the Development of Heart Failure. Developments in Cardiovascular Medicine, 1995, , 75-90.	0.1	3
77	A new altruist on the block: effects of adrenomedullin after myocardial infarction. Cardiovascular Research, 2002, 56, 347-349.	3.8	2
78	Gender Dependency in the Pathogenesis of Cardiac Hypertrophy. Hypertension, 2004, 44, 392-393.	2.7	2
79	Much ado about bone marrow stem cells: Role in post-myocardial infarct repair. Cardiovascular Research, 2006, 71, 609-611.	3.8	2
80	The Role of Angiotensin II in Post-Translational Regulation of Fibrillar Collagens in Fibrosed and Failing Rat Heart. Progress in Experimental Cardiology, 1998, , 471-498.	0.0	2
81	Experimental Models of MMP Activation: Ventricular Volume Overload. , 2005, , 253-271.		1
82	Soft Substrate Culture to Mechanically Control Cardiac Myofibroblast Activation. Methods in Molecular Biology, 2021, 2299, 171-179.	0.9	1
83	Tissue non-specific alkaline phosphatase (TNAP): A player in post-MI cardiac fibrosis. EBioMedicine, 2021, 68, 103430.	6.1	1
84	Regulatory Role of TGF-β in Cardiac Myofibroblast Function and Post-MI Cardiac Fibrosis: Key Roles of Smad7 and c-Ski. , 2008, , 249-266.		1
85	Working with what we have: Options for myocardial infarct repair?. Cardiovascular Research, 2007, 76, 377-378.	3.8	0
86	p42/p44 ERK modulates TGF-β1-mediated phosphorylation and translocation in cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology, 2007, 42, S51.	1.9	0
87	Retroviral c-Ski overexpression attenuates procollagen type I synthesis in primary cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology, 2007, 42, S75.	1.9	0
88	Invited Commentary. Annals of Thoracic Surgery, 2009, 88, 1921-1922.	1.3	0
89	Control of the Mesenchymal-Derived Cell Phenotype by Ski and Meox2: A Putative Mechanism for Postdevelopmental Phenoconversion. , 2011, , 29-42.		0
90	Proximity-Labelling by BioID Reveals Pleiotropic Ski Interactome. Journal of Molecular and Cellular Cardiology, 2018, 124, 124.	1.9	0

6

#	Article	IF	CITATIONS
91	Activated TGFβ Signaling in the Heart After Myocardial Infarction. Progress in Experimental Cardiology, 2000, , 303-320.	0.0	0
92	Cardiac Fibrosis During the Development of Heart Failure: New Insights into Smad Involvement. Progress in Experimental Cardiology, 2002, , 83-101.	0.0	0
93	Smad Cofactors/Corepressors in the Fibrosed Post-MI Heart: Possible Therapeutic Targets. Progress in Experimental Cardiology, 2004, , 485-511.	0.0	0
94	c‣ki upregulation of Meox2 diminishes cardiac myofibroblast phenotype. FASEB Journal, 2011, 25, 1032.1.	0.5	0
95	miRâ€1 and miRâ€301a Overexpression Impairs Collagen Gel Contraction in Human Mesenchymal Stem Cells. FASEB Journal, 2012, 26, lb681.	0.5	0
96	Transfatâ€nediated apoptosis is regulated by autophagy in primary cardiac myofibroblasts. FASEB Journal, 2012, 26, .	0.5	0
97	Autophagy in phenoconversion of differentiated and undifferentiated fibroblasts. FASEB Journal, 2013, 27, 1129.14.	0.5	0
98	The Ski-Zeb2-Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype. Development (Cambridge), 2014, 141, e307-e307.	2.5	0
99	Collagenous Proteins in Scar Tissue Subsequent to Myocardial Infarction. Developments in Cardiovascular Medicine, 1996, , 401-414.	0.1	0
100	Cardiac sarcolemmal Na+-Ca2+ exchange and Na+-K+ ATPase activities and gene expression in alloxan-induced diabetes in rats. , 1998, , 91-101.		0
101	Cardiac Fibrosis and Heart Failure—Cause or Effect?. , 2015, , 1-4.		0
102	Non-Canonical Regulation of TGF- $\hat{1}^21$ Signaling: A Role for Ski/Sno and YAP/TAZ. , 2015, , 147-165.		0
103	Ski Modulates Myofibroblast Motility via Downregulation of MMP2 and Paxillin. FASEB Journal, 2015, 29, LB579.	0.5	0
104	Proximity‣abeling by BioID Reveals Pleiotropic Role of Ski in Cardiac Fibrosis. FASEB Journal, 2019, 33, .	0.5	0