Xinlei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4197618/publications.pdf

Version: 2024-02-01

30	791	15	25
papers	citations	h-index	g-index
30	30	30	553
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Soot reduction effects of the addition of four butanol isomers on partially premixed flames of diesel surrogates. Combustion and Flame, 2017, 177, 123-136.	2.8	103
2	Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF. Combustion and Flame, 2018, 188, 129-141.	2.8	93
3	Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications. Energy, 2016, 114, 542-558.	4.5	90
4	Development of a reduced toluene reference fuel (TRF)-2,5-dimethylfuran-polycyclic aromatic hydrocarbon (PAH) mechanism for engine applications. Combustion and Flame, 2016, 165, 453-465.	2.8	58
5	Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion. Applied Energy, 2017, 189, 187-200.	5.1	44
6	A numerical investigation of the combustion kinetics of reactivity controlled compression ignition (RCCI) combustion in an optical engine. Fuel, 2019, 241, 753-766.	3.4	42
7	Computational assessment of effects of throat diameter on combustion and turbulence characteristics in a pre-chamber engine. Applied Thermal Engineering, 2022, 212, 118595.	3.0	36
8	Experimental and kinetic modeling study of a rich and a stoichiometric low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flames. Combustion and Flame, 2015, 162, 4586-4597.	2.8	33
9	Experimental and Modeling Investigations on Soot Formation of Ethanol, <i>n</i> -Butanol, 2,5-Dimethylfuran, and Biodiesel in Diesel Engines. Energy & Energy	2.5	22
10	Numerical investigation on the combustion and emission characteristics of a heavy-duty natural gas-diesel dual-fuel engine. Fuel, 2021, 300, 120998.	3.4	22
11	Investigation on the dual-fuel active-thermal atmosphere combustion strategy based on optical diagnostics and numerical simulations. Fuel, 2020, 276, 118023.	3.4	21
12	Numerical Investigation of the Free and Ducted Fuel Injections under Compression Ignition Conditions. Energy &	2.5	19
13	A Numerical Investigation on the Chemical Kinetics Process of a Reacting <i>n</i> -Dodecane Spray Flame under Compression Ignition Combustion Condition. Energy & Ener	2.5	18
14	A comparative numerical investigation of reactivity controlled compression ignition combustion using Large Eddy Simulation and Reynolds-Averaged Navier-Stokes approaches. Fuel, 2019, 257, 116023.	3.4	18
15	Effects of fuel trapping in piston crevice on unburned hydrocarbon emissions in early-injection compression ignition engines. Combustion and Flame, 2021, 231, 111496.	2.8	18
16	Investigation of the chemical kinetics process of diesel combustion in a compression ignition engine using the large eddy simulation approach. Fuel, 2020, 270, 117544.	3.4	17
17	Experimental study on the partially premixed combustion (PPC) fueled with n-butanol. Fuel, 2019, 257, 116000.	3.4	16
18	Kinetic Study of the Ignition Process of Methane/ <i>n</i> -Heptane Fuel Blends under High-Pressure Direct-Injection Natural Gas Engine Conditions. Energy & Energy & 2020, 34, 14796-14813.	2.5	15

#	Article	IF	CITATIONS
19	Development of a simplified n-heptane/methane model for high-pressure direct-injection natural gas marine engines. Frontiers in Energy, 2021, 15, 405-420.	1.2	14
20	Fuel flexibility potential for isobaric combustion in a compression ignition engine: A computational study. Fuel, 2022, 316, 123281.	3.4	14
21	Investigation of the Combustion Kinetics Process in a High-Pressure Direct Injection Natural Gas Marine Engine. Energy & Direction Natural Gas	2.5	13
22	Development of a reduced primary reference fuel-PODE3-methanol-ethanol-n-butanol mechanism for dual-fuel engine simulations. Energy, 2021, 235, 121439.	4.5	13
23	Experimental and Modelling Investigations of the Gasoline Compression Ignition Combustion in Diesel Engine. , 2017, , .		12
24	A numerical investigation of isobaric combustion strategy in a compression ignition engine. International Journal of Engine Research, 2021, 22, 3372-3390.	1.4	12
25	Validation of Computational Models for Isobaric Combustion Engines. , 0, , .		7
26	Numerical investigation of the effect of injection strategy on a high-pressure isobaric combustion engine. International Journal of Engine Research, 2023, 24, 595-609.	1.4	7
27	Computational study of the multi-injector isobaric combustion concept in a heavy-duty compression ignition engine. Fuel, 2022, 326, 125099.	3.4	6
28	Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine. , 0, , .		4
29	Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel., 0, , .		2
30	Investigation of the Engine Combustion Network Spray A Characteristics using Eulerian and Lagrangian Models. , 0, , .		2