Douglas J Paddon-Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4197375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietary protein recommendations and the prevention of sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 86-90.	2.5	664
2	Protein, weight management, and satiety. American Journal of Clinical Nutrition, 2008, 87, 1558S-1561S.	4.7	412
3	Amino acid ingestion improves muscle protein synthesis in the young and elderly. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E321-E328.	3.5	395
4	Functional Impact of 10 Days of Bed Rest in Healthy Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 1076-1081.	3.6	382
5	Protecting muscle mass and function in older adults during bed rest. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 34-39.	2.5	351
6	Role of dietary protein in the sarcopenia of aging. American Journal of Clinical Nutrition, 2008, 87, 1562S-1566S.	4.7	341
7	Dietary Protein Distribution Positively Influences 24-h Muscle Protein Synthesis in Healthy Adults. Journal of Nutrition, 2014, 144, 876-880.	2.9	290
8	A Moderate Serving of High-Quality Protein Maximally Stimulates Skeletal Muscle Protein Synthesis in Young and Elderly Subjects. Journal of the American Dietetic Association, 2009, 109, 1582-1586.	1.1	289
9	Essential Amino Acid and Carbohydrate Supplementation Ameliorates Muscle Protein Loss in Humans during 28 Days Bedrest. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4351-4358.	3.6	284
10	Amino Acid Supplementation Increases Lean Body Mass, Basal Muscle Protein Synthesis, and Insulin-Like Growth Factor-I Expression in Older Women. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1630-1637.	3.6	246
11	Aging does not impair the anabolic response to a protein-rich meal. American Journal of Clinical Nutrition, 2007, 86, 451-456.	4.7	217
12	Atrophy and Impaired Muscle Protein Synthesis during Prolonged Inactivity and Stress. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4836-4841.	3.6	211
13	Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein. Experimental Gerontology, 2006, 41, 215-219.	2.8	196
14	Protein and healthy aging. American Journal of Clinical Nutrition, 2015, 101, 1339S-1345S.	4.7	196
15	Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1113-E1122.	3.5	180
16	Dietary protein and muscle in older persons. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 5-11.	2.5	167
17	Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. Journal of Clinical Investigation, 2002, 110, 1687-1693.	8.2	154
18	Leucine supplementation chronically improves muscle protein synthesis in older adults consuming the RDA for protein. Clinical Nutrition, 2012, 31, 512-519.	5.0	150

#	Article	IF	CITATIONS
19	Differential Anabolic Effects of Testosterone and Amino Acid Feeding in Older Men. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 358-362.	3.6	134
20	Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. Journal of Applied Physiology, 2016, 120, 965-975.	2.5	134
21	Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutrition Research, 2008, 28, 651-658.	2.9	132
22	Leucine partially protects muscle mass and function during bed rest in middle-aged adults. American Journal of Clinical Nutrition, 2016, 103, 465-473.	4.7	127
23	Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Experimental Gerontology, 2015, 65, 1-7.	2.8	116
24	The anabolic response to resistance exercise and a protein-rich meal is not diminished by age. Journal of Nutrition, Health and Aging, 2011, 15, 376-381.	3.3	96
25	Adaptation to chronic eccentric exercise in humans: the influence of contraction velocity. European Journal of Applied Physiology, 2001, 85, 466-471.	2.5	93
26	Artificial gravity maintains skeletal muscle protein synthesis during 21 days of simulated microgravity. Journal of Applied Physiology, 2009, 107, 34-38.	2.5	92
27	Potential Ergogenic Effects of Arginine and Creatine Supplementation. Journal of Nutrition, 2004, 134, 2888S-2894S.	2.9	78
28	Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. Journal of Clinical Investigation, 2002, 110, 1687-1693.	8.2	78
29	Summary Points and Consensus Recommendations From the International Protein Summit. Nutrition in Clinical Practice, 2017, 32, 142S-151S.	2.4	75
30	Ageâ€related anabolic resistance after enduranceâ€type exercise in healthy humans. FASEB Journal, 2010, 24, 4117-4127.	0.5	73
31	Amino acid supplementation alters bone metabolism during simulated weightlessness. Journal of Applied Physiology, 2005, 99, 134-140.	2.5	71
32	Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E761-E767.	3.5	71
33	Amino acid metabolism and inflammatory burden in ovarian cancer patients undergoing intense oncological therapy. Clinical Nutrition, 2007, 26, 736-743.	5.0	68
34	Interplay of Stress and Physical Inactivity on Muscle Loss: Nutritional Countermeasures. Journal of Nutrition, 2006, 136, 2123-2126.	2.9	60
35	Androgen Therapy Induces Muscle Protein Anabolism in Older Women. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3844-3849.	3.6	53
36	Twenty-eight-day bed rest with hypercortisolemia induces peripheral insulin resistance and increases intramuscular triglycerides. Metabolism: Clinical and Experimental, 2010, 59, 703-710.	3.4	52

#	Article	IF	CITATIONS
37	Hypercortisolemia alters muscle protein anabolism following ingestion of essential amino acids. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E946-E953.	3.5	50
38	A Mediterranean-style eating pattern with lean, unprocessed red meat has cardiometabolic benefits for adults who are overweight or obese in a randomized, crossover, controlled feeding trial. American Journal of Clinical Nutrition, 2018, 108, 33-40.	4.7	50
39	The Catabolic Effects of Prolonged Inactivity and Acute Hypercortisolemia Are Offset by Dietary Supplementation. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1453-1459.	3.6	49
40	A Randomized Pilot Study of Monthly Cycled Testosterone Replacement or Continuous Testosterone Replacement <i>Versus</i> Placebo in Older Men. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1831-E1837.	3.6	49
41	Short-Term β-Hydroxy-β-Methylbutyrate Supplementation Does Not Reduce Symptoms of Eccentric Muscle Damage. International Journal of Sport Nutrition and Exercise Metabolism, 2001, 11, 442-450.	2.1	47
42	Protein: A nutrient in focus. Applied Physiology, Nutrition and Metabolism, 2015, 40, 755-761.	1.9	41
43	The effects of a repeated bout of eccentric exercise on indices of muscle damage and delayed onset muscle soreness. Journal of Science and Medicine in Sport, 2000, 3, 35-43.	1.3	39
44	Protein Turnover and Metabolism in the Elderly Intensive Care Unit Patient. Nutrition in Clinical Practice, 2017, 32, 112S-120S.	2.4	37
45	Optimizing Adult Protein Intake During Catabolic Health Conditions. Advances in Nutrition, 2020, 11, S1058-S1069.	6.4	36
46	The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment. Physiological Reports, 2021, 9, e14660.	1.7	35
47	Acute adaptation to low volume eccentric exercise. Medicine and Science in Sports and Exercise, 2001, 33, 1213-1219.	0.4	33
48	Protecting Skeletal Muscle with Protein and Amino Acid during Periods of Disuse. Nutrients, 2016, 8, 404.	4.1	33
49	Bed rest and myopathies. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 410-415.	2.5	31
50	Differential expression of muscle damage in humans following acute fast and slow velocity eccentric exercise. Journal of Science and Medicine in Sport, 2005, 8, 255-263.	1.3	30
51	Amino Acid Supplementation for Reversing Bed Rest and Steroid Myopathies. Journal of Nutrition, 2005, 135, 1809S-1812S.	2.9	28
52	Improving Dietary Protein Quality Reduces the Negative Effects of Physical Inactivity on Body Composition and Muscle Function. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1605-1611.	3.6	25
53	2,000ÂSteps/Day Does Not Fully Protect Skeletal Muscle Health in Older Adults During Bed Rest. Journal of Aging and Physical Activity, 2019, 27, 191-197.	1.0	21
54	Within-day protein distribution does not influence body composition responses during weight loss in resistance-training adults who are overweight. American Journal of Clinical Nutrition, 2017, 106, 1190-1196.	4.7	19

#	Article	IF	CITATIONS
55	Perspective: Exercise and Protein Supplementation in Frail Elders. Journal of the American Medical Directors Association, 2013, 14, 73-74.	2.5	18
56	Countering disuse atrophy in older adults with low-volume leucine supplementation. Journal of Applied Physiology, 2020, 128, 967-977.	2.5	18
57	Plasma triglycerides are not related to tissue lipids and insulin sensitivity in elderly following PPAR-α agonist treatment. Mechanisms of Ageing and Development, 2007, 128, 558-565.	4.6	15
58	Exceptional body composition changes attributed to collagen peptide supplementation and resistance training in older sarcopenic men. British Journal of Nutrition, 2016, 116, 569-570.	2.3	15
59	Variation in Protein Origin and Utilization: Research and Clinical Application. Nutrition in Clinical Practice, 2017, 32, 48S-57S.	2.4	11
60	Cytokine secretion and latent herpes virus reactivation with 28 days of horizontal hypokinesia. Aviation, Space, and Environmental Medicine, 2007, 78, 608-12.	0.5	10
61	How Many Nonprotein Calories Does a Critically III Patient Require? A Case for Hypocaloric Nutrition in the Critically III Patient. Nutrition in Clinical Practice, 2017, 32, 72S-76S.	2.4	9
62	Whey protein supplementation 2 hours after a lower protein breakfast restores plasma essential amino acid availability comparable to a higher protein breakfast in overweight adults. Nutrition Research, 2017, 47, 90-97.	2.9	9
63	Adopting a Mediterranean-Style Eating Pattern with Different Amounts of Lean Unprocessed Red Meat Does Not Influence Short-Term Subjective Personal Well-Being in Adults with Overweight or Obesity. Journal of Nutrition, 2018, 148, 1917-1923.	2.9	9
64	Leucine augments specific skeletal muscle mitochondrial respiratory pathways during recovery following 7 days of physical inactivity in older adults. Journal of Applied Physiology, 2021, 130, 1522-1533.	2.5	9
65	Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults. Frontiers in Physiology, 2016, 7, 292.	2.8	8
66	Assessing Functional Status Measures In Older Adults: A Guide For Healthcare Professionals. Physical Therapy Reviews, 2002, 7, 89-101.	0.8	6
67	Assessment of Protein Turnover in Health and Disease. Nutrition in Clinical Practice, 2017, 32, 15S-20S.	2.4	6
68	The intersection of disuse-induced muscle atrophy and satellite cell content: reply to Snijders, Nederveen, and Parise. Journal of Applied Physiology, 2016, 120, 1491-1491.	2.5	5
69	Branched-chain ketoacid ingestion: an alternative to efficiently increase skeletal muscle protein synthesis. American Journal of Clinical Nutrition, 2019, 110, 799-800.	4.7	3
70	11C-L-methyl methionine dynamic PET/CT of skeletal muscle: response to protein supplementation compared to L-[ring 13C6] phenylalanine infusion with serial muscle biopsy. Annals of Nuclear Medicine, 2017, 31, 295-303.	2.2	2
71	Protein Recommendations for Bodybuilders: In This Case, More May Indeed Be Better. Journal of Nutrition, 2017, 147, 723-724.	2.9	2
72	Effects of 10 days of bedrest on body composition and the rate of muscle protein synthesis in older men and women. FASEB Journal, 2006, 20, A159.	0.5	2

Douglas J Paddon-Jones

#	Article	IF	CITATIONS
73	Continuous testosterone administration for 5 months reduces markers of bone turnover in older men. FASEB Journal, 2008, 22, 1188.3.	0.5	2
74	Cost-Effectiveness of Pre-Exercise Carbohydrate Meals and Their Impact on Endurance Performance. Journal of Strength and Conditioning Research, 1998, 12, 90-94.	2.1	1
75	Amino Acid Supplementation and Skeletal Muscle Metabolism in Ageing Populations. Hormone Research in Paediatrics, 2006, 66, 93-97.	1.8	1
76	The T allele of TCF7L2 rs7903146 is associated with decreased glucose tolerance after bed rest in healthy older adults. Scientific Reports, 2022, 12, 6897.	3.3	1
77	Skeletal Muscle Strength and Functional Ability in Older Adults Following 10 Days of Bed Rest. FASEB Journal, 2006, 20, A382.	0.5	Ο
78	Nitric oxideâ€ s timulated skeletal muscle capillary flow and glucose uptake in healthy elderly. FASEB Journal, 2006, 20, A142.	0.5	0
79	Muscle Protein Synthesis in the Elderly Following Ingestion of Whey Protein or its Corresponding Essential Amino Acid Content. Medicine and Science in Sports and Exercise, 2006, 38, S112.	0.4	Ο
80	Maximizing protein anabolism in young and aging muscle: a dose response to dietary protein ingestion. FASEB Journal, 2008, 22, 1095.10.	0.5	0
81	A model of clinical inactivity with hypercortisolemia and hypocaloric diet induces peripheral insulin resistance and increases intramuscular fat. FASEB Journal, 2008, 22, 1225.2.	0.5	Ο
82	Peripheral vasodilation and aerobic exercise equally affect skeletal muscle substrate utilization in older and younger adults. FASEB Journal, 2009, 23, 777.10.	0.5	0
83	Leucine supplemented meals improve muscle protein synthesis in older adults. FASEB Journal, 2009, 23, 738.17.	0.5	0
84	An Analysis of the Dietary Protein Intake of Hospitalized Elders. FASEB Journal, 2009, 23, 548.8.	0.5	0
85	Protein Distribution Needs for Optimal Meal Response. FASEB Journal, 2011, 25, 983.7.	0.5	0
86	Recovery of muscular endurance and motor activation following physical inactivity in middleâ€aged adults. FASEB Journal, 2011, 25, 1106.4.	0.5	0
87	Protein Distribution Effect on Indices of Satiety. FASEB Journal, 2012, 26, 1013.5.	0.5	0
88	Muscle protein synthesis is suboptimal following a typical carbohydrateâ€rich breakfast. FASEB Journal, 2012, 26, 1013.7.	0.5	0
89	Skeletal muscle fatigue and neuromuscular activation during bed rest. FASEB Journal, 2012, 26, 1085.7.	0.5	0
90	Leucine preserves muscle and strength and enhances recovery following bed rest. FASEB Journal, 2012, 26, 1085.6.	0.5	0

#	Article	IF	CITATIONS
91	Muscle Metabolism, Nutrition, and Functional Status in Older Adults. , 2015, , 113-124.		Ο
92	Diabetes Risk Variants Associate With Impaired Insulin Sensitivity In Healthy Adults Following Bed Rest. Medicine and Science in Sports and Exercise, 2020, 52, 129-130.	0.4	0