
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4197136/publications.pdf Version: 2024-02-01

ΙΙΑΝΠΙΝΙ λλ/Π

#	Article	IF	CITATIONS
1	Understanding and Predicting the Short-Term Passenger Flow of Station-Free Shared Bikes: A Spatiotemporal Deep Learning Approach. IEEE Intelligent Transportation Systems Magazine, 2022, 14, 73-85.	3.8	9
2	Decisions on train rescheduling and locomotive assignment during the COVID-19 outbreak: A case of the Beijing-Tianjin intercity railway. Decision Support Systems, 2022, 161, 113600.	5.9	8
3	Station-level short-term demand forecast of carsharing system via station-embedding-based hybrid neural network. Transportmetrica B, 2022, 10, 1-19.	2.3	5
4	Scheduling optimisation of multi-type special vehicles in an airport. Transportmetrica B, 2022, 10, 954-970.	2.3	8
5	An Efficient Train Timetable Scheduling Approach With Regenerative-Energy Supplementation Strategy Responding to Potential Power Interruptions. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 14267-14282.	8.0	6
6	A capacity matching model in a collaborative urban public transport system: integrating passenger and freight transportation. International Journal of Production Research, 2022, 60, 6303-6328.	7.5	10
7	Scaling of spatio-temporal variations of taxi travel routes. New Journal of Physics, 2022, 24, 043020.	2.9	4
8	Quantifying out-of-station waiting time in oversaturated urban metro systems. Communications in Transportation Research, 2022, 2, 100052.	10.7	7
9	Measuring the Similarity of Metro Stations Based on the Passenger Visit Distribution. ISPRS International Journal of Geo-Information, 2022, 11, 18.	2.9	3
10	Optimizing storage location assignment in an automotive Ro-Ro terminal. Transportation Research Part B: Methodological, 2021, 143, 249-281.	5.9	13
11	A discrete-time second-best dynamic road pricing scheme considering the existence of multiple equilibria. Transportmetrica B, 2021, 9, 303-323.	2.3	4
12	Incorporating multimodal coordination into timetabling optimization of the last trains in an urban railway network. Transportation Research Part C: Emerging Technologies, 2021, 124, 102889.	7.6	18
13	Topologic characteristics and sustainable growth of worldwide urban rail networks. International Journal of Modern Physics B, 2021, 35, 2150151.	2.0	14
14	A platoon regulation algorithm to improve the traffic performance of highway work zones. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 941-956.	9.8	38
15	First train timetabling and bus service bridging in intermodal bus-and-train transit networks. Transportation Research Part B: Methodological, 2021, 149, 443-462.	5.9	21
16	Quantification of the impact of traffic incidents on speed reduction: A causal inference based approach. Accident Analysis and Prevention, 2021, 157, 106163.	5.7	10
17	Percolation-based health management of complex traffic systems. Frontiers of Engineering Management, 2021, 8, 557-571.	6.1	20
18	Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framework for level of service enhancement. Transportation Research, Part A: Policy and Practice, 2021, 153, 235-260.	4.2	15

#	Article	IF	CITATIONS
19	Performance-Based Transportation and Land Use Integrated Optimization Model with Degradable Capacity and Stochastic Demand. Journal of the Urban Planning and Development Division, ASCE, 2021, 147, .	1.7	5
20	Household Residential Location Choice Equilibrium Model Based on Reference-Dependent Theory. Journal of the Urban Planning and Development Division, ASCE, 2020, 146, .	1.7	18
21	Mining commuting behavior of urban rail transit network by using association rules. Physica A: Statistical Mechanics and Its Applications, 2020, 559, 125094.	2.6	8
22	Multiple metastable network states in urban traffic. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17528-17534.	7.1	36
23	A robust train timetable optimization approach for reducing the number of waiting passengers in metro systems. Physica A: Statistical Mechanics and Its Applications, 2020, 558, 124927.	2.6	15
24	Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks. Energy, 2020, 206, 118127.	8.8	25
25	Multistation coordinated and dynamic passenger inflow control for a metro line. IET Intelligent Transport Systems, 2020, 14, 1068-1078.	3.0	9
26	Understanding user's travel behavior and city region functions from station-free shared bike usage data. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 72, 81-95.	3.7	27
27	Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last train operation. Transportation Research, Part A: Policy and Practice, 2020, 138, 463-490.	4.2	19
28	Passenger flow control strategies for urban rail transit networks. Applied Mathematical Modelling, 2020, 82, 168-188.	4.2	63
29	A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system. Transportation Research Part B: Methodological, 2020, 133, 85-113.	5.9	44
30	A Bi-Objective Timetable Optimization Model for Urban Rail Transit Based on the Time-Dependent Passenger Volume. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 604-615.	8.0	78
31	Urban Rail Timetable Optimization to Improve Operational Efficiency with Flexible Routing Plans: A Nonlinear Integer Programming Model. Sustainability, 2019, 11, 3701.	3.2	10
32	An Energy-Efficient Timetable Optimization Approach in a Bi-DirectionUrban Rail Transit Line: A Mixed-Integer Linear Programming Model. Energies, 2019, 12, 2686.	3.1	11
33	Performance improvement of energy consumption, passenger time and robustness in metro systems: A multi-objective timetable optimization approach. Computers and Industrial Engineering, 2019, 137, 106076.	6.3	26
34	Optimal Topology of Multilayer Urban Traffic Networks. Complexity, 2019, 2019, 1-19.	1.6	8
35	Optimal urban expressway system in a transportation and land use interaction equilibrium framework. Transportmetrica A: Transport Science, 2019, 15, 1247-1277.	2.0	14
36	Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework. Transportation Research Part B: Methodological, 2019, 126, 115-138.	5.9	36

#	Article	IF	CITATIONS
37	Discrete Train Speed Profile Optimization for Urban Rail Transit: A Data-Driven Model and Integrated Algorithms Based on Machine Learning. Journal of Advanced Transportation, 2019, 2019, 1-17.	1.7	20
38	Travel mode choice: a data fusion model using machine learning methods and evidence from travel diary survey data. Transportmetrica A: Transport Science, 2019, 15, 1587-1612.	2.0	23
39	Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics. Transportation Research, Part E: Logistics and Transportation Review, 2019, 126, 87-102.	7.4	21
40	Application of Complex Networks Theory in Urban Traffic Network Researches. Networks and Spatial Economics, 2019, 19, 1281-1317.	1.6	79
41	Data-driven model for passenger route choice in urban metro network. Physica A: Statistical Mechanics and Its Applications, 2019, 524, 787-798.	2.6	27
42	Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation. Applied Mathematical Modelling, 2019, 72, 337-355.	4.2	42
43	Analyzing crowd dynamic characteristics of boarding and alighting process in urban metro stations. Physica A: Statistical Mechanics and Its Applications, 2019, 526, 121075.	2.6	19
44	Marginal Cost Pricing Analysis on Tradable Credits in Traffic Engineering. Mathematical Problems in Engineering, 2019, 2019, 1-10.	1.1	3
45	Recognizing the Critical Stations in Urban Rail Networks: An Analysis Method Based on the Smart-Card Data. IEEE Intelligent Transportation Systems Magazine, 2019, 11, 29-35.	3.8	42
46	Crowded urban traffic: co-evolution among land development, population, roads and vehicle ownership. Nonlinear Dynamics, 2019, 95, 2783-2795.	5.2	18
47	First-train timing synchronisation using multi-objective optimisation in urban transit networks. International Journal of Production Research, 2019, 57, 3522-3537.	7.5	20
48	Analysis of energy consumption reduction in metro systems using rolling stop-skipping patterns. Computers and Industrial Engineering, 2019, 127, 129-142.	6.3	38
49	Activity-based trip chaining behavior analysis in the network under the parking fee scheme. Transportation, 2019, 46, 647-669.	4.0	18
50	An energy-efficient rescheduling approach under delay perturbations for metro systems. Transportmetrica B, 2019, 7, 386-400.	2.3	37
51	Optimizing last trains timetable in the urban rail network: social welfare and synchronization. Transportmetrica B, 2019, 7, 473-497.	2.3	18
52	Last train timetabling optimization and bus bridging service management in urban railway transit networks. Omega, 2019, 84, 31-44.	5.9	71
53	Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks. Physica A: Statistical Mechanics and Its Applications, 2018, 503, 800-817.	2.6	50
54	Park-and-ride service design under a price-based tradable credits scheme in a linear monocentric city. Transport Policy, 2018, 68, 1-12.	6.6	22

#	Article	IF	CITATIONS
55	Bi-objective nonlinear programming with minimum energy consumption and passenger waiting time for metro systems, based on the real-world smart-card data. Transportmetrica B, 2018, 6, 302-319.	2.3	20
56	Energy-efficient timetable and speed profile optimization with multi-phase speed limits: Theoretical analysis and application. Applied Mathematical Modelling, 2018, 56, 32-50.	4.2	53
57	Metro timetable optimisation for minimising carbon emission and passenger time: a biâ€objective integer programming approach. IET Intelligent Transport Systems, 2018, 12, 673-681.	3.0	23
58	Optimal Bus-Bridging Service under a Metro Station Disruption. Journal of Advanced Transportation, 2018, 2018, 1-16.	1.7	20
59	Heuristic urban transportation network design method, a multilayer coevolution approach. Physica A: Statistical Mechanics and Its Applications, 2017, 479, 71-83.	2.6	28
60	Optimizing Passenger Flow Control and Busâ€Bridging Service for Commuting Metro Lines. Computer-Aided Civil and Infrastructure Engineering, 2017, 32, 458-473.	9.8	61
61	Optimal toll of new highway in the equilibrium framework of heterogeneous households' residential location choice. Transportation Research, Part A: Policy and Practice, 2017, 105, 123-137.	4.2	15
62	City expansion model based on population diffusion and road growth. Applied Mathematical Modelling, 2017, 43, 1-14.	4.2	30
63	Multiperiod-based timetable optimization for metro transit networks. Transportation Research Part B: Methodological, 2017, 96, 46-67.	5.9	123
64	Analysis of Road Network Pattern Considering Population Distribution and Central Business District. PLoS ONE, 2016, 11, e0151676.	2.5	13
65	Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network. PLoS ONE, 2016, 11, e0167126.	2.5	16
66	Railway Timetable Rescheduling Based on Priority and Train Order Entropy. Journal of Computing in Civil Engineering, 2016, 30, .	4.7	11
67	Population-driven Urban Road Evolution Dynamic Model. Networks and Spatial Economics, 2016, 16, 997-1018.	1.6	14
68	Estimating the influence of common disruptions on urban rail transit networks. Transportation Research, Part A: Policy and Practice, 2016, 94, 62-75.	4.2	44
69	Tradable credits scheme and transit investment optimization for a twoâ€mode traffic network. Journal of Advanced Transportation, 2016, 50, 1616-1629.	1.7	10
70	Timetable coordination of first trains in urban railway network: A case study of Beijing. Applied Mathematical Modelling, 2016, 40, 8048-8066.	4.2	63
71	Integrated Co-evolution Model of Land Use and Traffic Network Design. Networks and Spatial Economics, 2016, 16, 579-603.	1.6	33
72	Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network. PLoS ONE, 2015, 10, e0139961.	2.5	48

#	Article	IF	CITATIONS
73	A case study on the coordination of last trains for the Beijing subway network. Transportation Research Part B: Methodological, 2015, 72, 112-127.	5.9	120
74	Equity-based timetable synchronization optimization in urban subway network. Transportation Research Part C: Emerging Technologies, 2015, 51, 1-18.	7.6	146
75	A practical model for last train rescheduling with train delay in urban railway transit networks. Omega, 2015, 50, 29-42.	5.9	132
76	MODELING THE COEVOLUTION OF ROAD EXPANSION AND URBAN TRAFFIC GROWTH. International Journal of Modeling, Simulation, and Scientific Computing, 2014, 17, 1450005.	1.4	7
77	Urban Road Network Evolution to Maximize the Capacity. Procedia, Social and Behavioral Sciences, 2014, 138, 251-258.	0.5	6
78	Reliability-based traffic network design with advanced traveler information systems. Information Sciences, 2014, 287, 121-130.	6.9	20
79	Spatial distribution complexities of traffic congestion and bottlenecks in different network topologies. Applied Mathematical Modelling, 2014, 38, 496-505.	4.2	37
80	Coevolution dynamics model of road surface and urban traffic structure. Nonlinear Dynamics, 2013, 73, 1327-1334.	5.2	13
81	Road Pricing under Mixed Equilibrium Behaviors on Urban Congested Networks. , 2011, , .		0
82	Topological-based bottleneck analysis and improvement strategies for traffic networks. Science in China Series D: Earth Sciences, 2009, 52, 2814-2822.	0.9	6
83	A bi-level programming model and solution algorithm for the location of logistics distribution centers. Applied Mathematical Modelling, 2008, 32, 610-616.	4.2	211
84	Statistical Properties of Individual Choice Behaviors on Urban Traffic Networks. Journal of Transportation System Engineering and Information Technology, 2008, 8, 69-74.	0.6	5
85	URBAN TRAFFIC CONGESTION SPREADING IN SMALL WORLD NETWORKS. International Journal of Modern Physics B, 2005, 19, 4239-4246.	2.0	4
86	Solution algorithm for the bi-level discrete network design problem. Transportation Research Part B: Methodological, 2005, 39, 479-495.	5.9	236
87	SIMULATION OF TRAFFIC CONGESTION WITH SIR MODEL. Modern Physics Letters B, 2004, 18, 1537-1542.	1.9	41
88	URBAN TRANSIT SYSTEM AS A SCALE-FREE NETWORK. Modern Physics Letters B, 2004, 18, 1043-1049.	1.9	102
89	Modeling pedestrian behaviors of boarding and alighting dynamics in urban railway stations. Transportmetrica A: Transport Science, 0, , 1-24.	2.0	1