
## Giancarlo Ghirlanda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/419713/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.                                                                                               | 27.8 | 715       |
| 2  | The Collimation orrected Gammaâ€Ray Burst Energies Correlate with the Peak Energy of Their<br>νFνSpectrum. Astrophysical Journal, 2004, 616, 331-338.                                                              | 4.5  | 509       |
| 3  | General physical properties of bright Fermi blazars. Monthly Notices of the Royal Astronomical Society, 2010, 402, 497-518.                                                                                        | 4.4  | 448       |
| 4  | SN 2003lw and GRB 031203: A Bright Supernova for a Faint Gamma-Ray Burst. Astrophysical Journal, 2004, 609, L5-L8.                                                                                                 | 4.5  | 320       |
| 5  | Compact radio emission indicates a structured jet was produced by a binary neutron star merger.<br>Science, 2019, 363, 968-971.                                                                                    | 12.6 | 272       |
| 6  | The transition between BL Lac objects and flat spectrum radio quasars. Monthly Notices of the Royal<br>Astronomical Society, 2011, 414, 2674-2689.                                                                 | 4.4  | 262       |
| 7  | GeV emission from gamma-ray bursts: a radiative fireball?. Monthly Notices of the Royal Astronomical Society, 0, 403, 926-937.                                                                                     | 4.4  | 203       |
| 8  | A COMPLETE SAMPLE OF BRIGHT <i>SWIFT</i> LONG GAMMA-RAY BURSTS. I. SAMPLE PRESENTATION,<br>LUMINOSITY FUNCTION AND EVOLUTION. Astrophysical Journal, 2012, 749, 68.                                                | 4.5  | 198       |
| 9  | The intergalactic magnetic field constrained by <i>Fermi</i> /Large Area Telescope observations of the<br>TeV blazar 1ES 0229+200. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 406, L70-L74. | 3.3  | 197       |
| 10 | Gamma-Ray Bursts: New Rulers to Measure the Universe. Astrophysical Journal, 2004, 613, L13-L16.                                                                                                                   | 4.5  | 181       |
| 11 | Science with e-ASTROGAM. Journal of High Energy Astrophysics, 2018, 19, 1-106.                                                                                                                                     | 6.7  | 177       |
| 12 | TeV BL Lac objects at the dawn of the <i>Fermi</i> era. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1570-1586.                                                                                   | 4.4  | 174       |
| 13 | Constraining the location of the emitting region in <i>Fermi</i> blazars through rapid γ-ray variability.<br>Monthly Notices of the Royal Astronomical Society: Letters, 2010, 405, L94-L98.                       | 3.3  | 158       |
| 14 | The evolution of the X-ray afterglow emission of GW 170817/ GRB 170817A in <i>XMM-Newton</i> observations. Astronomy and Astrophysics, 2018, 613, L1.                                                              | 5.1  | 150       |
| 15 | Spectral properties of 438 GRBs detected by <i>Fermi</i> /GBM. Astronomy and Astrophysics, 2011, 530, A21.                                                                                                         | 5.1  | 140       |
| 16 | Gamma-ray bursts as standard candles to constrain the cosmological parameters. New Journal of Physics, 2006, 8, 123-123.                                                                                           | 2.9  | 134       |
| 17 | Extremely hard GRB spectra prune down the forest of emission models. Astronomy and Astrophysics, 2003, 406, 879-892.                                                                                               | 5.1  | 133       |
| 18 | The THESEUS space mission concept: science case, design and expected performances. Advances in Space<br>Research, 2018, 62, 191-244.                                                                               | 2.6  | 133       |

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Gamma-ray bursts in the comoving frame. Monthly Notices of the Royal Astronomical Society, 2012, 420, 483-494.                                                                     | 4.4  | 131       |
| 20 | Short versus long gamma-ray bursts: spectra, energetics, and luminosities. Astronomy and Astrophysics, 2009, 496, 585-595.                                                         | 5.1  | 126       |
| 21 | A complete sample of bright <i>Swift</i> long gamma-ray bursts: testing the spectral-energy correlations. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1256-1264. | 4.4  | 123       |
| 22 | Jet and accretion power in the most powerful <i>Fermi</i> blazars. Monthly Notices of the Royal Astronomical Society, 2009, 399, 2041-2054.                                        | 4.4  | 112       |
| 23 | The γ-ray brightest days of the blazar 3C 454.3. Monthly Notices of the Royal Astronomical Society, 2011, 410, 368-380.                                                            | 4.4  | 112       |
| 24 | "Late Prompt" Emission in Gamma-Ray Bursts?. Astrophysical Journal, 2007, 658, L75-L78.                                                                                            | 4.5  | 108       |
| 25 | Spectral-luminosity relation within individual <i>Fermi</i> gamma rays bursts. Astronomy and Astrophysics, 2010, 511, A43.                                                         | 5.1  | 105       |
| 26 | GRB 130427A: A Nearby Ordinary Monster. Science, 2014, 343, 48-51.                                                                                                                 | 12.6 | 105       |
| 27 | Discovery of a tight correlation among the prompt emission properties of long gamma-ray bursts.<br>Monthly Notices of the Royal Astronomical Society, 2006, 370, 185-197.          | 4.4  | 103       |
| 28 | The E <sub>peak</sub> –E <sub>iso</sub> plane of long gamma-ray bursts and selection effects. Monthly<br>Notices of the Royal Astronomical Society, 2008, 387, 319-330.            | 4.4  | 98        |
| 29 | A complete sample of bright Swift short gamma-ray bursts. Monthly Notices of the Royal<br>Astronomical Society, 2014, 442, 2342-2356.                                              | 4.4  | 98        |
| 30 | Short gamma-ray bursts at the dawn of the gravitational wave era. Astronomy and Astrophysics, 2016, 594, A84.                                                                      | 5.1  | 96        |
| 31 | A unifying view of gamma-ray burst afterglows. Monthly Notices of the Royal Astronomical Society, 2009, 393, 253-271.                                                              | 4.4  | 92        |
| 32 | Confirming the <sup>ĵ</sup> 3-ray burst spectral-energy correlations in the era of multiple time breaks. Astronomy and Astrophysics, 2007, 466, 127-136.                           | 5.1  | 87        |
| 33 | Dust extinctions for an unbiased sample of gamma-ray burst afterglows. Monthly Notices of the Royal<br>Astronomical Society, 2013, 432, 1231-1244.                                 | 4.4  | 86        |
| 34 | The spectra of short gamma-ray bursts. Astronomy and Astrophysics, 2004, 422, L55-L58.                                                                                             | 5.1  | 84        |
| 35 | The onset of theÂGeV afterglow of CRBÂ090510. Astronomy and Astrophysics, 2010, 510, L7.                                                                                           | 5.1  | 80        |
| 36 | Bulk Lorentz factors of gamma-ray bursts. Astronomy and Astrophysics, 2018, 609, A112.                                                                                             | 5.1  | 76        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Afterglow emission in gamma-ray bursts – I. Pair-enriched ambient medium and radiative blast waves.<br>Monthly Notices of the Royal Astronomical Society, 2013, 433, 2107-2121.      | 4.4 | 71        |
| 38 | Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113. | 5.1 | 70        |
| 39 | Peak energy of the prompt emission of long gamma-ray bursts versus their fluence and peak flux.<br>Monthly Notices of the Royal Astronomical Society, 2008, 391, 639-652.            | 4.4 | 67        |
| 40 | Precursors in <i>Swift</i> Gamma Ray Bursts with Redshift. Astrophysical Journal, 2008, 685, L19-L22.                                                                                | 4.5 | 66        |
| 41 | A new method optimized to use gamma-ray bursts as cosmic rulers. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2005, 360, L1-L5.                                    | 3.3 | 65        |
| 42 | Probing the existence of the Epeak-Eiso correlation in long gamma ray bursts. Monthly Notices of the<br>Royal Astronomical Society: Letters, 2005, 361, L10-L14.                     | 3.3 | 64        |
| 43 | Clustering of the optical-afterglow luminosities of long gamma-ray bursts. Astronomy and Astrophysics, 2006, 451, 821-833.                                                           | 5.1 | 64        |
| 44 | Detection of Low-energy Breaks in Gamma-Ray Burst Prompt Emission Spectra. Astrophysical Journal, 2017, 846, 137.                                                                    | 4.5 | 63        |
| 45 | Prompt optical emission as a signature of synchrotron radiation in gamma-ray bursts. Astronomy and Astrophysics, 2019, 628, A59.                                                     | 5.1 | 63        |
| 46 | The hard TeV spectrum of 1ES 0229+200: new clues from <i>Swift</i> . Monthly Notices of the Royal<br>Astronomical Society: Letters, 2009, 399, L59-L63.                              | 3.3 | 62        |
| 47 | The peak luminosity-peak energy correlation in gamma-ray bursts. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2005, 360, L45-L49.                                  | 3.3 | 61        |
| 48 | Chasing the heaviest black holes of jetted active galactic nuclei. Monthly Notices of the Royal<br>Astronomical Society, 2010, , .                                                   | 4.4 | 61        |
| 49 | The rate and luminosity function of long gamma ray bursts. Astronomy and Astrophysics, 2016, 587,<br>A40.                                                                            | 5.1 | 61        |
| 50 | Time resolved spectral analysis of bright gamma ray bursts. Astronomy and Astrophysics, 2002, 393,<br>409-423.                                                                       | 5.1 | 61        |
| 51 | Light-curve models of black hole – neutron star mergers: steps towards a multi-messenger parameter estimation. Astronomy and Astrophysics, 2019, 625, A152.                          | 5.1 | 60        |
| 52 | Are GRB 980425 and GRB 031203 real outliers or twins of GRB 060218?. Monthly Notices of the Royal Astronomical Society, 2006, 372, 1699-1709.                                        | 4.4 | 59        |
| 53 | The radio-Î <sup>3</sup> -ray connection in Fermi blazars. Monthly Notices of the Royal Astronomical Society, 2011,<br>413, 852-862.                                                 | 4.4 | 59        |
| 54 | Structure of gamma-ray burst jets: intrinsic versus apparent properties. Monthly Notices of the Royal<br>Astronomical Society, 2015, 450, 3549-3558.                                 | 4.4 | 57        |

4

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the <i>Swift</i> /BAT6 complete sample of bright LGRBs. Astronomy and Astrophysics, 2016, 590, A129.           | 5.1  | 57        |
| 56 | The faster the narrower: characteristic bulk velocities and jet opening angles of gamma-ray bursts.<br>Monthly Notices of the Royal Astronomical Society, 2013, 428, 1410-1423.                            | 4.4  | 56        |
| 57 | THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Research, 2018, 62, 662-682.                                                                                      | 2.6  | 56        |
| 58 | Correlation of Fermi Large Area Telescope sources with the 20-GHz Australia Telescope Compact Array radio survey. Monthly Notices of the Royal Astronomical Society, 2010, 407, 791-803.                   | 4.4  | 55        |
| 59 | A complete sample of bright <i>Swift</i> Gamma-ray bursts: X-ray afterglow luminosity and its correlation with the prompt emission. Monthly Notices of the Royal Astronomical Society, 2012, 425, 506-513. | 4.4  | 55        |
| 60 | Luminosity function and jet structure of Gamma-Ray Burst. Monthly Notices of the Royal<br>Astronomical Society, 2015, 447, 1911-1921.                                                                      | 4.4  | 55        |
| 61 | The dark bursts population in a complete sample of bright <i>Swift</i> long gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1265-1272.                                     | 4.4  | 53        |
| 62 | Diversity of gamma-ray burst energetics vs. supernova homogeneity: SN 2013cq associated with GRB<br>130427A. Astronomy and Astrophysics, 2014, 567, A29.                                                   | 5.1  | 53        |
| 63 | Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity.<br>Monthly Notices of the Royal Astronomical Society, 2015, 446, 1129-1138.                            | 4.4  | 53        |
| 64 | On the interpretation of spectral-energy correlations in long gamma-ray bursts. Astronomy and Astrophysics, 2006, 450, 471-481.                                                                            | 5.1  | 53        |
| 65 | High-redshift Fermi blazars. Monthly Notices of the Royal Astronomical Society, 2011, 411, 901-914.                                                                                                        | 4.4  | 51        |
| 66 | The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.<br>Nature, 2011, 480, 69-71.                                                                                | 27.8 | 51        |
| 67 | Consistency with synchrotron emission in the bright GRB 160625B observed by <i>Fermi</i> .<br>Astronomy and Astrophysics, 2018, 613, A16.                                                                  | 5.1  | 51        |
| 68 | Evidence of two spectral breaks in the prompt emission of gamma-ray bursts. Astronomy and Astrophysics, 2019, 625, A60.                                                                                    | 5.1  | 51        |
| 69 | Soft gamma-ray repeater giant flares in the BATSE short gamma-ray burst catalogue: constraints from spectroscopy. Monthly Notices of the Royal Astronomical Society: Letters, 2005, 362, L8-L12.           | 3.3  | 49        |
| 70 | Structured Jets and X-Ray Plateaus in Gamma-Ray Burst Phenomena. Astrophysical Journal, 2020, 893, 88.                                                                                                     | 4.5  | 48        |
| 71 | Characterization of gamma-ray burst prompt emission spectra down to soft X-rays. Astronomy and Astrophysics, 2018, 616, A138.                                                                              | 5.1  | 47        |
| 72 | On-axis view of GRB 170817A. Astronomy and Astrophysics, 2019, 628, A18.                                                                                                                                   | 5.1  | 47        |

| #  | Article                                                                                                                                                                                                    | IF           | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 73 | The Hubble diagram extended to z >>1: the gamma-ray properties of gamma-ray bursts confirm the  cold<br>dark matter model. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 372, L28-L32. | 3.3          | 45        |
| 74 | Ultra-high energy cosmic rays, spiral galaxies and magnetars. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2008, 390, L88-L92.                                                           | 3.3          | 45        |
| 75 | The optical SN 2012bz associated with the long GRB 120422A. Astronomy and Astrophysics, 2012, 547,                                                                                                         | A5812.       | 45        |
| 76 | Photospheric emission throughout GRB 100507 detected by Fermi. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3237-3244.                                                                    | 4.4          | 45        |
| 77 | Clustering of LAT light curves: a clue to the origin of high-energy emission in gamma-ray bursts.<br>Monthly Notices of the Royal Astronomical Society, 2014, 443, 3578-3585.                              | 4.4          | 45        |
| 78 | Time resolved spectral behavior of bright BATSE precursors. Astronomy and Astrophysics, 2009, 505, 569-575.                                                                                                | 5.1          | 44        |
| 79 | Light curves and spectra from off-axis gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3607-3619.                                                                          | 4.4          | 44        |
| 80 | Did we observe the supernova shock breakout in GRB 060218?. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 382, L77-L81.                                                                | 3.3          | 43        |
| 81 | The X-ray afterglow of GRB 030329. Astronomy and Astrophysics, 2003, 409, 983-987.                                                                                                                         | 5.1          | 43        |
| 82 | Evidence for anisotropy in the distribution of short-lived gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2003, 343, 255-258.                                                        | 4.4          | 42        |
| 83 | Fermi/GBM and BATSE gamma-ray bursts: comparison of the spectral properties. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3153-3162.                                                      | 4.4          | 41        |
| 84 | GRB 091127/SN 2009nz and the VLT/X-shooter spectroscopy ofÂitsÂhost galaxy: probing the faint end c<br>mass-metallicity relation. Astronomy and Astrophysics, 2011, 535, A127.                             | of the $5.1$ | 40        |
| 85 | Blue Fermi flat spectrum radio quasars. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1371-1379.                                                                                           | 4.4          | 40        |
| 86 | Blackbody components in gamma-ray bursts spectra?. Monthly Notices of the Royal Astronomical Society, 2007, 379, 73-85.                                                                                    | 4.4          | 38        |
| 87 | HOW TO SWITCH A GAMMA-RAY BURST ON AND OFF THROUGH A MAGNETAR. Astrophysical Journal, 2013, 775, 67.                                                                                                       | 4.5          | 38        |
| 88 | Spectral analysis of Swift long gamma-ray bursts with known redshift. Monthly Notices of the Royal<br>Astronomical Society, 2007, 382, 342-355.                                                            | 4.4          | 37        |
| 89 | Puzzled by GRB 060218. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 375, L36-L40.                                                                                                     | 3.3          | 36        |
| 90 | The blazar S5 0014+813: a real or apparent monster?. Monthly Notices of the Royal Astronomical<br>Society: Letters, 2009, 399, L24-L28.                                                                    | 3.3          | 35        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Unveiling the population of orphan <i>l³</i> -ray bursts. Astronomy and Astrophysics, 2015, 578, A71.                                                                              | 5.1 | 35        |
| 92  | Proton–synchrotron as the radiation mechanism of the prompt emission of gamma-ray bursts?.<br>Astronomy and Astrophysics, 2020, 636, A82.                                          | 5.1 | 35        |
| 93  | Short and long gamma-ray bursts: same emission mechanism?. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 418, L109-L113.                                       | 3.3 | 34        |
| 94  | SDSS J102623.61+254259.5: the second most distant blazar at <i>z</i> = 5.3. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 426, L91-L95.                        | 3.3 | 34        |
| 95  | Electromagnetic counterparts of black hole–neutron star mergers: dependence on the neutron star<br>properties. European Physical Journal A, 2020, 56, 1.                           | 2.5 | 34        |
| 96  | Spectral evolution of <i>Fermi</i> /GBM short gamma-ray bursts. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2011, 410, L47-L51.                                 | 3.3 | 33        |
| 97  | Cosmological constraints with GRBs: homogeneous medium vs. wind density profile. Astronomy and Astrophysics, 2006, 452, 839-844.                                                   | 5.1 | 32        |
| 98  | The THESEUS space mission: science goals, requirements and mission concept. Experimental Astronomy, 2021, 52, 183-218.                                                             | 3.7 | 32        |
| 99  | Time-resolved spectral correlations of long-duration Î <sup>3</sup> -ray bursts. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1209-1218.                          | 4.4 | 30        |
| 100 | SDSS J114657.79+403708.6: the third most distant blazar at <i>z</i> Â=Â5.0. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2014, 440, L111-L115.                   | 3.3 | 30        |
| 101 | GRB Orphan Afterglows in Present and Future Radio Transient Surveys. Publications of the Astronomical Society of Australia, 2014, 31, .                                            | 3.4 | 30        |
| 102 | GRB 190114C: from prompt to afterglow?. Astronomy and Astrophysics, 2019, 626, A12.                                                                                                | 5.1 | 30        |
| 103 | Radio afterglows of a complete sample of bright Swift GRBs: predictions from present days to the SKA era. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2543-2551. | 4.4 | 29        |
| 104 | Accessing the population of high-redshift Gamma Ray Bursts. Monthly Notices of the Royal<br>Astronomical Society, 2015, 448, 2514-2524.                                            | 4.4 | 29        |
| 105 | Late evolution of the X-ray afterglow of GRB 030329. Astronomy and Astrophysics, 2004, 423, 861-865.                                                                               | 5.1 | 28        |
| 106 | Where and When: Optimal Scheduling of the Electromagnetic Follow-up of Gravitational-wave Events<br>Based on Counterpart Light-curve Models. Astrophysical Journal, 2017, 846, 62. | 4.5 | 28        |
| 107 | High-latitude emission from the structured jet of <i>γ</i> -ray bursts observed off-axis. Astronomy and Astrophysics, 2020, 641, A61.                                              | 5.1 | 27        |
| 108 | There is a short gamma-ray burst prompt phase at the beginning of each long one. Monthly Notices of the Royal Astronomical Society, 2015, 448, 403-416.                            | 4.4 | 26        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The impact of selection biases on the correlation of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2553-2559.                                    | 4.4 | 25        |
| 110 | Optical and X-ray rest-frame light curves of the BAT6 sample. Astronomy and Astrophysics, 2014, 565, A72.                                                                          | 5.1 | 25        |
| 111 | Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities. Space Science Reviews, 2016, 202, 235-277.                                                  | 8.1 | 23        |
| 112 | The high-redshift gamma-ray burst GRB 140515A. Astronomy and Astrophysics, 2015, 581, A86.                                                                                         | 5.1 | 23        |
| 113 | Does the gamma-ray flux of the blazar 3C 454.3 vary on subhour time-scales?. Monthly Notices of the<br>Royal Astronomical Society, 0, 408, 448-451.                                | 4.4 | 21        |
| 114 | Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory.<br>Astrophysical Journal, Supplement Series, 2022, 260, 18.                        | 7.7 | 21        |
| 115 | Optical afterglow luminosities in the <i>Swift</i> epoch: confirming clustering and bimodality.<br>Monthly Notices of the Royal Astronomical Society: Letters, 2008, 386, L87-L91. | 3.3 | 20        |
| 116 | Testing a new view of gamma-ray burst afterglows. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1131-1142.                                                         | 4.4 | 20        |
| 117 | The 999th <i>Swift</i> gamma-ray burst: Some like it thermal. Astronomy and Astrophysics, 2017, 598, A23.                                                                          | 5.1 | 20        |
| 118 | Re-born fireballs in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 382, L72-L76.                                                             | 3.3 | 19        |
| 119 | EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Experimental Astronomy, 2009, 23, 67-89.                                                                        | 3.7 | 19        |
| 120 | Rise and fall of the high-energy afterglow emission of GRB 180720B. Astronomy and Astrophysics, 2020, 636, A55.                                                                    | 5.1 | 19        |
| 121 | Multiwavelength View of the Close-by GRB 190829A Sheds Light on Gamma-Ray Burst Physics.<br>Astrophysical Journal Letters, 2022, 931, L19.                                         | 8.3 | 19        |
| 122 | The role of afterglow break-times as gamma-ray burst jet angle indicators. Monthly Notices of the<br>Royal Astronomical Society, 2007, 377, 1464-1472.                             | 4.4 | 18        |
| 123 | Filling the Mass Gap: How Kilonova Observations Can Unveil the Nature of the Compact Object<br>Merging with the Neutron Star. Astrophysical Journal Letters, 2019, 887, L35.       | 8.3 | 18        |
| 124 | Limits on quantum gravity effects from <i>Swift </i> short gamma-ray bursts. Astronomy and Astrophysics, 2017, 607, A121.                                                          | 5.1 | 17        |
| 125 | Interpreting GRB170817A as a giant flare from a jet-less double neutron star merger. Astronomy and Astrophysics, 2018, 619, A18.                                                   | 5.1 | 17        |
| 126 | Gamma-ray bursts associated with supernovae: a systematic analysis of BATSE GRBÂcandidates.<br>Astronomy and Astrophysics, 2006, 447, 121-132.                                     | 5.1 | 17        |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Jet-driven and jet-less fireballs from compact binary mergers. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2018, 474, L7-L11.                                | 3.3 | 16        |
| 128 | Afterglows from precursors in gamma-ray bursts. Application to the optical afterglow of GRB 091024.<br>Monthly Notices of the Royal Astronomical Society, 2014, 445, 1625-1635. | 4.4 | 15        |
| 129 | Are short Gamma Ray Bursts similar to long ones?. Journal of High Energy Astrophysics, 2015, 7, 81-89.                                                                          | 6.7 | 14        |
| 130 | A magnetar powering the ordinary monster GRB 130427A?. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 439, L80-L84.                                          | 3.3 | 13        |
| 131 | High-redshift Fermi blazars observed by GROND and Swift. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1449-1459.                                               | 4.4 | 12        |
| 132 | Exploration of the high-redshift universe enabled by THESEUS. Experimental Astronomy, 2021, 52, 219-244.                                                                        | 3.7 | 12        |
| 133 | Exploring the nature of ambiguous merging systems: GW190425 in low latency. Astronomy and Astrophysics, 2021, 654, A12.                                                         | 5.1 | 12        |
| 134 | Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy, 2021, 52, 245-275.                                                                              | 3.7 | 12        |
| 135 | On the correlation of short gamma-ray bursts and clusters of galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 368, L20-L24.                          | 3.3 | 11        |
| 136 | The AT20G view of Swift/BAT selected AGN: high-frequency radio waves meet hard X-rays. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2471-2480.                 | 4.4 | 11        |
| 137 | GRB 990413: insight into the thermal phase evolution. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 370, L33-L37.                                           | 3.3 | 10        |
| 138 | The best place and time to live in the Milky Way. Astronomy and Astrophysics, 2021, 647, A41.                                                                                   | 5.1 | 10        |
| 139 | The slope of the low-energy spectrum of prompt gamma-ray burst emission. Astronomy and Astrophysics, 2021, 652, A123.                                                           | 5.1 | 10        |
| 140 | The Cosmic History of Long Gamma-Ray Bursts. Astrophysical Journal, 2022, 932, 10.                                                                                              | 4.5 | 10        |
| 141 | Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3634-3639.                     | 4.4 | 9         |
| 142 | A <i>NuSTAR</i> view of powerful <i><math>\hat{I}^3</math></i> -ray loud blazars. Astronomy and Astrophysics, 2019, 627, A72.                                                   | 5.1 | 9         |
| 143 | Gamma ray burst studies with THESEUS. Experimental Astronomy, 2021, 52, 277-308.                                                                                                | 3.7 | 9         |
| 144 | The Gamow Explorer: a Gamma-Ray Burst Observatory to study the high redshift universe and enable                                                                                |     | 9         |

multi-messenger astrophysics. , 2021, , .

| #   | Article                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | The obscured hyper-energetic GRB 120624B hosted by a luminous compact galaxy at <i>z</i> = 2.20.<br>Astronomy and Astrophysics, 2013, 557, L18.                                        | 5.1  | 9         |
| 146 | Properties of High-redshift Gamma-Ray Bursts. Astrophysical Journal, 2022, 929, 111.                                                                                                   | 4.5  | 9         |
| 147 | Optical afterglows of gamma-ray bursts: a bimodal distribution?. Monthly Notices of the Royal<br>Astronomical Society, 0, 383, 1049-1057.                                              | 4.4  | 8         |
| 148 | Advances on GRB as cosmological tools. , 2009, , .                                                                                                                                     |      | 8         |
| 149 | A search for radio afterglows from gamma-ray bursts with the Australian Square Kilometre Array<br>Pathfinder. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1847-1863. | 4.4  | 8         |
| 150 | Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities. Experimental Astronomy, 2021, 52, 407-437.                                               | 3.7  | 8         |
| 151 | Gamma-ray bursts spectral correlations and their cosmological use. Philosophical Transactions<br>Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1385-1394.     | 3.4  | 7         |
| 152 | Gamma-ray bursts from massive Population-III stars: clues from the radio band. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3356-3362.                                | 4.4  | 7         |
| 153 | ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.                                                                                  | 3.7  | 6         |
| 154 | Searching for narrow absorption and emission lines in <i>XMM-Newton</i> spectra of gamma-ray bursts. Astronomy and Astrophysics, 2016, 592, A85.                                       | 5.1  | 6         |
| 155 | East Asia VLBI Network observations of the TeV Gamma-Ray Burst 190114C. Science Bulletin, 2020, 65, 267-271.                                                                           | 9.0  | 6         |
| 156 | Spectral index-flux relation for investigating the origins of steep decay in Î <sup>3</sup> -ray bursts. Nature<br>Communications, 2021, 12, 4040.                                     | 12.8 | 6         |
| 157 | EDGE: explorer of diffuse emission and gamma-ray burst explosions. , 2007, , .                                                                                                         |      | 5         |
| 158 | A deep study of the high–energy transient sky. Experimental Astronomy, 2021, 51, 1203-1223.                                                                                            | 3.7  | 5         |
| 159 | Compton tails in long-duration gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2004, 350, L5-L8.                                                                  | 4.4  | 4         |
| 160 | X-ray absorbing column densities of a complete sample of short gamma ray bursts. Astronomy and Astrophysics, 2019, 625, A6.                                                            | 5.1  | 4         |
| 161 | Colour variations in the GRB 120327A afterglow. Astronomy and Astrophysics, 2017, 607, A29.                                                                                            | 5.1  | 4         |
| 162 | SuperAGILE: The Hard X-ray Imager of AGILE. AIP Conference Proceedings, 2004, , .                                                                                                      | 0.4  | 3         |

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | AGILE Sensitivity and GRB Spectral Properties. AIP Conference Proceedings, 2004, , .                                                                                    | 0.4 | 3         |
| 164 | From the earliest pulses to the latest flares in long gamma-ray bursts. Astronomy and Astrophysics, 2018, 615, A80.                                                     | 5.1 | 3         |
| 165 | Time resolved GRB spectroscopy. AIP Conference Proceedings, 2000, , .                                                                                                   | 0.4 | 2         |
| 166 | Selection effects on GRB spectral-energy correlations. , 2009, , .                                                                                                      |     | 2         |
| 167 | Gamma ray bursts: Short vs. long. Advances in Space Research, 2011, 47, 1332-1336.                                                                                      | 2.6 | 2         |
| 168 | Scientific simulations and optimization of the XGIS instrument on board THESEUS. , 2020, , .                                                                            |     | 2         |
| 169 | The X-ray Afterglow of GRB030329 at Early and Late Times. AIP Conference Proceedings, 2004, , .                                                                         | 0.4 | 1         |
| 170 | Gamma Ray Bursts as Cosmological Tools. AlP Conference Proceedings, 2005, , .                                                                                           | 0.4 | 1         |
| 171 | Long Gamma-Ray Bursts as standard candles. AIP Conference Proceedings, 2006, , .                                                                                        | 0.4 | 1         |
| 172 | XIAO: a soft x-ray telescope for the SVOM mission. , 2008, , .                                                                                                          |     | 1         |
| 173 | A complete sample of long bright Swift gamma ray bursts. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120235. | 3.4 | 1         |
| 174 | Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities. Space Sciences Series of ISSI, 2016, , 237-279.                                  | 0.0 | 1         |
| 175 | Spectral Analysis of Bright Gamma-Ray Bursts. AIP Conference Proceedings, 2003, , .                                                                                     | 0.4 | 0         |
| 176 | Short-Bright GRBs: Spectral Properties. AIP Conference Proceedings, 2004, , .                                                                                           | 0.4 | 0         |
| 177 | Firework Model: Time Dependent Spectral Evolution of GRB. AIP Conference Proceedings, 2004, , .                                                                         | 0.4 | Ο         |
| 178 | On the selection effects of the E[sub peak]—E[sub iso] correlation. AIP Conference Proceedings, 2008, , .                                                               | 0.4 | 0         |
| 179 | GRB spectral-energy correlations: perspectives and issues. , 2008, , .                                                                                                  |     | 0         |
| 180 | Relativistic jets in Narrow-Line Seyfert 1. Proceedings of the International Astronomical Union, 2010, 6, 176-177.                                                      | 0.0 | 0         |

| #   | Article                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Gamma Ray Bursts Spectral–Energy correlations: recent results. Proceedings of the International Astronomical Union, 2010, 6, 344-348. | 0.0 | Ο         |
| 182 | Hard X-ray properties of Gamma Ray Bursts in the cosmological context. , 2010, , .                                                    |     | 0         |
| 183 | Testing an unifying view of Gamma Ray Burst afterglows. Advances in Space Research, 2011, 47, 1407-1412.                              | 2.6 | Ο         |
| 184 | A Complete Sample of Long Bright <i>Swift</i> GRBs. EAS Publications Series, 2013, 61, 229-233.                                       | 0.3 | 0         |
| 185 | GRB: A LUMINOUS CANDLE?. , 2005, , .                                                                                                  |     | Ο         |
| 186 | GRB 060218 and the outliers with respect to the Ep $\hat{a} \in \hat{~}$ Eiso correlation. , 2007, , .                                |     | 0         |