## Natalie Flores-DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4196809/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Rise of Dyeâ€Sensitized Solar Cells: From Molecular Photovoltaics to Emerging Solidâ€State<br>Photovoltaic Technologies. Helvetica Chimica Acta, 2021, 104, e2000230.                                  | 1.6  | 18        |
| 2  | Thermodynamic stability screening of IR-photonic processed multication halide perovskite thin films.<br>Journal of Materials Chemistry A, 2021, 9, 26885-26895.                                            | 10.3 | 4         |
| 3  | Zinc Phthalocyanine Conjugated Dimers as Efficient Dopantâ€Free Hole Transporting Materials in<br>Perovskite Solar Cells. ChemPhotoChem, 2020, 4, 307-314.                                                 | 3.0  | 19        |
| 4  | Dopant-Free Hole-Transport Materials with Germanium Compounds Bearing Pseudohalide and<br>Chalcogenide Moieties for Perovskite Solar Cells. Inorganic Chemistry, 2020, 59, 15154-15166.                    | 4.0  | 2         |
| 5  | Blue Photosensitizer with Copper(II/I) Redox Mediator for Efficient and Stable Dyeâ€Sensitized Solar<br>Cells. Advanced Functional Materials, 2020, 30, 2004804.                                           | 14.9 | 30        |
| 6  | Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells.<br>Journal of the American Chemical Society, 2020, 142, 11428-11433.                                     | 13.7 | 107       |
| 7  | Metal Coordination Complexes as Redox Mediators in Regenerative Dye-Sensitized Solar Cells.<br>Inorganics, 2019, 7, 30.                                                                                    | 2.7  | 79        |
| 8  | Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 10729-10738.            | 10.3 | 13        |
| 9  | A tandem redox system with a cobalt complex and 2-azaadamantane- <i>N</i> -oxyl for fast dye regeneration and open circuit voltages exceeding 1 V. Journal of Materials Chemistry A, 2019, 7, 10998-11006. | 10.3 | 8         |
| 10 | Neutral organic redox pairs based on sterically hindered hydroquinone/benzoquinone derivatives for dye-sensitized solar cells. Solar Energy, 2018, 167, 76-83.                                             | 6.1  | 9         |
| 11 | Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based<br>Electrolytes and by Co-Sensitization. ACS Applied Materials & Interfaces, 2016, 8, 32797-32804.         | 8.0  | 67        |
| 12 | 3,4-Ethylenedioxythiophene-based cobalt complex: an efficient co-mediator in dye-sensitized solar cells with poly(3,4-ethylenedioxythiophene) counter-electrode. Electrochimica Acta, 2015, 179, 237-240.  | 5.2  | 13        |
| 13 | Facile route to freestanding CH3NH3PbI3 crystals using inverse solubility. Scientific Reports, 2015, 5, 11654.                                                                                             | 3.3  | 112       |
| 14 | Direct light-induced polymerization of cobalt-based redox shuttles: an ultrafast way towards stable dye-sensitized solar cells. Chemical Communications, 2015, 51, 16308-16311.                            | 4.1  | 73        |
| 15 | How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit<br>Voltage and Electron Lifetimes Langmuir 2010, 26, 2592-2598                                        | 3.5  | 359       |