Peizhou Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4196787/publications.pdf

Version: 2024-02-01

		840776	996975	
15	655	11	15	
papers	citations	h-index	g-index	
15	15	15	1310	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	<i>C9orf72</i> poly(GR) aggregation induces TDP-43 proteinopathy. Science Translational Medicine, 2020, 12, .	12.4	115
2	ER stress response plays an important role in aggregation of \hat{l}_\pm -synuclein. Molecular Neurodegeneration, 2010, 5, 56.	10.8	90
3	Parkinson's disease: experimental models and reality. Acta Neuropathologica, 2018, 135, 13-32.	7.7	89
4	Adenosine monophosphate-activated protein kinase overactivation leads to accumulation of α-synuclein oligomers and decrease of neurites. Neurobiology of Aging, 2013, 34, 1504-1515.	3.1	82
5	Impaired endo-lysosomal membrane integrity accelerates the seeding progression of \hat{l}_{\pm} -synuclein aggregates. Scientific Reports, 2017, 7, 7690.	3.3	73
6	Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies. Brain, 2020, 143, 1905-1919.	7.6	44
7	Loss of Tmem106b exacerbates <scp>FTLD</scp> pathologies and causes motor deficits in progranulinâ€deficient mice. EMBO Reports, 2020, 21, e50197.	4.5	35
8	Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiology of Aging, 2015, 36, 1209-1220.	3.1	32
9	Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Regulates the Stability and Function of GluA1 $\hat{1}$ ±-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid (AMPA) Receptor in Neurons. PLoS ONE, 2014, 9, e113237.	2.5	28
10	Proaggregant nuclear factor(s) trigger rapid formation of \hat{l}_{\pm} -synuclein aggregates in apoptotic neurons. Acta Neuropathologica, 2016, 132, 77-91.	7.7	27
11	Histones facilitate α-synuclein aggregation during neuronal apoptosis. Acta Neuropathologica, 2017, 133, 547-558.	7.7	20
12	Using leucine zipper to facilitate αâ€synuclein assembly. FASEB Journal, 2008, 22, 3165-3174.	0.5	10
13	Genetic modification of H2AX renders mesenchymal stromal cell–derived dopamine neurons more resistant to DNA damage and subsequent apoptosis. Cytotherapy, 2016, 18, 1483-1492.	0.7	7
14	Nanoparticles With Affinity for α-Synuclein Sequester α-Synuclein to Form Toxic Aggregates in Neurons With Endolysosomal Impairment. Frontiers in Molecular Neuroscience, 2021, 14, 738535.	2.9	2
15	Apoptotic Neuron-Derived Histone Amyloid Fibrils Induce α-Synuclein Aggregation. Molecular Neurobiology, 2021, 58, 867-876.	4.0	1