Ali Nadernezhad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4196715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioink Platform Utilizing Dual‣tage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells. Macromolecular Bioscience, 2022, 22, e2100331.	4.1	12
2	Tethered TGF-β1 in a Hyaluronic Acid-Based Bioink for Bioprinting Cartilaginous Tissues. International Journal of Molecular Sciences, 2022, 23, 924.	4.1	26
3	A Printâ€andâ€Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels. Advanced Materials, 2022, 34, .	21.0	24
4	Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Cells, 2021, 10, 803.	4.1	46
5	Melt Electrowriting of Isomalt for Highâ€Resolution Templating of Embedded Microchannels. Advanced Materials Technologies, 2021, 6, 2100221.	5.8	9
6	Hyaluronic Acidâ€Based Bioink Composition Enabling 3D Bioprinting and Improving Quality of Deposited Cartilaginous Extracellular Matrix. Advanced Healthcare Materials, 2020, 9, e2000737.	7.6	81
7	Sterilization Methods and Their Influence on Physicochemical Properties and Bioprinting of Alginate as a Bioink Component. ACS Omega, 2020, 5, 6481-6486.	3.5	27
8	Rheological analysis of the interplay between the molecular weight and concentration of hyaluronic acid in formulations of supramolecular HA/FmocFF hybrid hydrogels. Polymer Journal, 2020, 52, 1007-1012.	2.7	13
9	Material extrusion-based additive manufacturing of structurally controlled poly(lactic acid)/carbon nanotube nanocomposites. International Journal of Advanced Manufacturing Technology, 2019, 102, 2119-2132.	3.0	22
10	Nanocomposite Bioinks Based on Agarose and 2D Nanosilicates with Tunable Flow Properties and Bioactivity for 3D Bioprinting. ACS Applied Bio Materials, 2019, 2, 796-806.	4.6	67
11	Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting. Macromolecular Bioscience, 2018, 18, e1800024.	4.1	74
12	Nanosilicate embedded agarose hydrogels with improved bioactivity. Carbohydrate Polymers, 2018, 201, 105-112.	10.2	38
13	Hierarchical and spatial modeling and bio-additive manufacturing of multi-material constructs. CIRP Annals - Manufacturing Technology, 2017, 66, 229-232.	3.6	17
14	Modeling and Additive Manufacturing of Biomimetic Heterogeneous Scaffold. Procedia CIRP, 2017, 65, 48-55.	1.9	3
15	Biomanufacturing of Heterogeneous Hydrogel Structures with Patterned Electrically Conductive Regions. Procedia CIRP, 2017, 65, 44-47.	1.9	4
16	Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells. Journal of Materials Engineering and Performance, 2016, 25, 2331-2339.	2.5	21
17	Multifunctional 3D printing of heterogeneous hydrogel structures. Scientific Reports, 2016, 6, 33178.	3.3	58
18	Effect of Tricalcium Magnesium Silicate Coating on the Electrochemical and Biological Behavior of Ti-6Al-4V Alloys. PLoS ONE, 2015, 10, e0138454.	2.5	12

#	Article	IF	CITATIONS
19	Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy. Journal of Materials Science: Materials in Medicine, 2014, 25, 2605-2617.	3.6	24
20	Effect of sintering temperature and cooling rate on the morphology, mechanical behavior and apatite-forming ability of a novel nanostructured magnesium calcium silicate scaffold prepared by a freeze casting method. Journal of Materials Science, 2014, 49, 1297-1305.	3.7	18
21	Effect of ball milling time on the synthesis of nanocrystalline merwinite via mechanical activation and heat treatment. International Journal of Materials Research, 2014, 105, 469-473.	0.3	11
22	Two step sintering of a novel calcium magnesium silicate bioceramic: Sintering parameters and mechanical characterization. Journal of the European Ceramic Society, 2014, 34, 4001-4009.	5.7	18