
Mingke Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4196514/publications.pdf Version: 2024-02-01

MINCKE HIL

#	Article	IF	CITATIONS
1	Radiative cooling: A review of fundamentals, materials, applications, and prospects. Applied Energy, 2019, 236, 489-513.	10.1	474
2	Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Applied Energy, 2016, 179, 899-908.	10.1	110
3	Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling. Solar Energy Materials and Solar Cells, 2018, 178, 266-272.	6.2	103
4	Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe. Applied Thermal Engineering, 2016, 106, 651-660.	6.0	99
5	Spectrally selective approaches for passive cooling of solar cells: A review. Applied Energy, 2020, 262, 114548.	10.1	98
6	Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module. Solar Energy, 2018, 176, 248-255.	6.1	85
7	Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Applied Energy, 2017, 205, 626-634.	10.1	73
8	Preliminary experimental study of a specular and a diffuse surface for daytime radiative cooling. Solar Energy Materials and Solar Cells, 2019, 191, 290-296.	6.2	73
9	Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system. Energy, 2017, 137, 419-430.	8.8	60
10	Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling. Applied Energy, 2020, 260, 114167.	10.1	56
11	Performance evaluation of daytime radiative cooling under different clear sky conditions. Applied Thermal Engineering, 2019, 155, 660-666.	6.0	54
12	Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120557119.	7.1	52
13	Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system. Applied Energy, 2018, 231, 288-300.	10.1	49
14	Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating. Renewable Energy, 2019, 139, 1217-1226.	8.9	48
15	A review on independent and integrated/coupled two-phase loop thermosyphons. Applied Energy, 2020, 280, 115885.	10.1	46
16	Numerical study and experimental validation of a combined diurnal solar heating and nocturnal radiative cooling collector. Applied Thermal Engineering, 2018, 145, 1-13.	6.0	45
17	Radiative cooling of solar cells with micro-grating photonic cooler. Renewable Energy, 2022, 191, 662-668.	8.9	45
18	Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling. Applied Energy, 2019, 252, 113432.	10.1	44

Мінске Ни

#	Article	IF	CITATIONS
19	General strategy of passive sub-ambient daytime radiative cooling. Solar Energy Materials and Solar Cells, 2019, 199, 108-113.	6.2	41
20	Performance analysis on a high-temperature solar evacuated receiver with an inner radiation shield. Energy, 2017, 139, 447-458.	8.8	40
21	Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield. Applied Energy, 2020, 268, 115004.	10.1	39
22	Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects. Renewable and Sustainable Energy Reviews, 2022, 160, 112304.	16.4	37
23	Comparative analysis of different surfaces for integrated solar heating and radiative cooling: A numerical study. Energy, 2018, 155, 360-369.	8.8	34
24	A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system. Energy, 2019, 183, 892-900.	8.8	34
25	Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope. Renewable Energy, 2019, 138, 793-804.	8.9	33
26	Energetic and exergetic analyses on structural optimized parabolic trough solar receivers in a concentrated solar–thermal collector system. Energy, 2019, 171, 611-623.	8.8	33
27	Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling. ACS Applied Materials & amp; Interfaces, 2021, 13, 14132-14140.	8.0	33
28	Is it possible for a photovoltaic-thermoelectric device to generate electricity at night?. Solar Energy Materials and Solar Cells, 2021, 228, 111136.	6.2	32
29	Theoretical and Experimental Study of Spectral Selectivity Surface for Both Solar Heating and Radiative Cooling. International Journal of Photoenergy, 2015, 2015, 1-9.	2.5	31
30	Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector. Energy, 2018, 165, 811-824.	8.8	31
31	A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector. Renewable Energy, 2021, 167, 884-898.	8.9	29
32	Experimental study and numerical validation on the effect of inclination angle to the thermal performance of solar heat pipe photovoltaic/thermal system. Energy, 2021, 223, 120020.	8.8	29
33	Development of a 2D temperature-irradiance coupling model for performance characterizations of the flat-plate photovoltaic/thermal (PV/T) collector. Renewable Energy, 2020, 153, 404-419.	8.9	28
34	Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications. Applied Energy, 2019, 252, 113427.	10.1	27
35	Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis. Energy, 2019, 175, 677-686.	8.8	27
36	Performance evaluation of controllable separate heat pipes. Applied Thermal Engineering, 2016, 100, 518-527.	6.0	23

Мінске Ни

#	Article	IF	CITATIONS
37	Preliminary performance study of a high-temperature parabolic trough solar evacuated receiver with an inner transparent radiation shield. Solar Energy, 2018, 173, 640-650.	6.1	23
38	An analytical study of the nocturnal radiative cooling potential of typical photovoltaic/thermal module. Applied Energy, 2020, 277, 115625.	10.1	23
39	Feasibility research on a double-covered hybrid photo-thermal and radiative sky cooling module. Solar Energy, 2020, 197, 332-343.	6.1	22
40	Light and thermal management of the semi-transparent radiative cooling glass for buildings. Energy, 2022, 238, 121761.	8.8	21
41	Hybrid thermochemical sorption seasonal storage for ultra-low temperature solar energy utilization. Energy, 2022, 239, 122068.	8.8	21
42	Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate. Applied Energy, 2022, 306, 118096.	10.1	20
43	Implementation of Passive Radiative Cooling Technology in Buildings: A Review. Buildings, 2020, 10, 215.	3.1	17
44	Optimization strategies and verifications of negative thermal-flux region occurring in parabolic trough solar receiver. Journal of Cleaner Production, 2021, 278, 123407.	9.3	16
45	Performance analysis of a novel bifacial solar photothermic and radiative cooling module. Energy Conversion and Management, 2021, 236, 114057.	9.2	16
46	Effect of the spectrally selective features of the cover and emitter combination on radiative cooling performance. Energy and Built Environment, 2021, 2, 251-259.	5.9	14
47	An air curtain surrounding the solar tower receiver for effective reduction of convective heat loss. Sustainable Cities and Society, 2021, 71, 103007.	10.4	14
48	Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control. Applied Energy, 2020, 275, 115337.	10.1	13
49	Feasibility of realizing daytime solar heating and radiative cooling simultaneously with a novel structure. Sustainable Cities and Society, 2021, 74, 103224.	10.4	13
50	Performance evaluation of combined solar chimney and radiative cooling ventilation. Building and Environment, 2022, 209, 108686.	6.9	12
51	Characterisation of a controllable loop thermosyphon for precise temperature management. Applied Thermal Engineering, 2021, 185, 116444.	6.0	11
52	Tunable thermal management based on solar heating and radiative cooling. Solar Energy Materials and Solar Cells, 2022, 235, 111457.	6.2	11
53	Sub-ambient daytime radiative cooling based on continuous sunlight blocking. Solar Energy Materials and Solar Cells, 2022, 245, 111854.	6.2	11
54	Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study. Energy, 2022, 251, 123986.	8.8	10

Мінске Ни

#	Article	IF	CITATIONS
55	A Study on Daylighting Performance of Split Louver with Simplified Parametric Control. Buildings, 2022, 12, 594.	3.1	8
56	Quantitative analyses and a novel optimization strategy on negative energy-flow region in parabolic trough solar receivers. Solar Energy, 2020, 196, 663-672.	6.1	7
57	A rigid spectral selective cover for integrated solar heating and radiative sky cooling system. Solar Energy Materials and Solar Cells, 2021, 230, 111270.	6.2	7
58	Numerical analysis of a novel household refrigerator with controllable loop thermosyphons. International Journal of Refrigeration, 2019, 104, 134-143.	3.4	6
59	A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling. Frontiers in Energy, 2020, 14, 882-888.	2.3	6
60	Preliminary characterization of a dual-source passive building cooling system based on loop thermosyphon. Energy and Buildings, 2022, 262, 111981.	6.7	6
61	Investigation on an Improved Household Refrigerator for Energy Saving of Residential Buildings. Applied Sciences (Switzerland), 2020, 10, 4246.	2.5	5
62	Consideration of cooling loss process of the emitter for radiative cooling. Journal of Renewable and Sustainable Energy, 2020, 12, 014703.	2.0	5
63	Assessment of Performance Enhancement Potential of a High-Temperature Parabolic Trough Collector System Combining the Optimized IR-Reflectors. Applied Sciences (Switzerland), 2020, 10, 3744.	2.5	3
64	Investigation of a radiative sky cooling module using phase change material as the energy storage. Applied Energy, 2022, 321, 119357.	10.1	2
65	Effect of Precipitable Water Vapor Amount on Radiative Cooling Performance. IOP Conference Series: Materials Science and Engineering, 2017, 199, 012081.	0.6	0