
Anatoly Kazakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4196507/publications.pdf Version: 2024-02-01

ANATOLYKAZAKOV

#	Article	IF	CITATIONS
1	Energetic potential of solid composite propellants based on CL-20-containing bimolecular crystals. Russian Chemical Bulletin, 2016, 65, 2018-2024.	0.4	28
2	Kinetics of the thermal decomposition of dinitramide. Russian Chemical Bulletin, 1998, 47, 379-385.	0.4	17
3	Highâ€Temperature Structural Transformations of 1,1â€Diaminoâ€2,2â€dinitroethene (FOXâ€7). Propellants, Explosives, Pyrotechnics, 2016, 41, 1006-1012.	1.0	17
4	Thermochemical and Energy Characteristics of Alkoxy-NNO-Azoxy Derivatives of Pyrazole and Nitropyrazoles. Combustion, Explosion and Shock Waves, 2019, 55, 327-334.	0.3	16
5	Kinetics of thermal decomposition of dinitramide. Russian Chemical Bulletin, 1997, 46, 2015-2020.	0.4	15
6	Thermochemical and Energy Characteristics of DNTF and DNFF. Combustion, Explosion and Shock Waves, 2018, 54, 147-157.	0.3	15
7	Synthesis and thermal decomposition of ditetrazol-5-ylamine. Russian Chemical Bulletin, 2005, 54, 1710-1714.	0.4	13
8	Enthalpies of formation of 3,4- and 3,5-dinitro-1-trimethyl-1Еpyrazoles. Russian Chemical Bulletin, 2016, 65, 2783-2788.	0.4	13
9	Pyrazolyltetrazoles—a High-Enthalpy Backbone for Designing High-Energy Compounds: An Experimental Study of the Enthalpy of Formation. Doklady Physical Chemistry, 2018, 478, 15-18.	0.2	13
10	Energetic abilities of nitro derivatives of isomeric (pyrazol-3-yl)tetrazoles as components of solid composite propellants. Russian Chemical Bulletin, 2018, 67, 1580-1588.	0.4	13
11	Slow large-scale supramolecular structuring as a cause of kinetic anomalies in the liquid-phase oxidation with nitric acid. Russian Chemical Bulletin, 2016, 65, 984-992.	0.4	12
12	Kinetics and mechanism of thermal decomposition of ammonium nitrate and sulfate mixtures. Russian Journal of Applied Chemistry, 2011, 84, 1516-1523.	0.1	11
13	Influence of the supramolecular structure of the liquid reaction medium on the kinetics of acetone oxidation with aqueous solutions of nitric acid. Russian Chemical Bulletin, 2013, 62, 994-1002.	0.4	11
14	Preparation and NMR analysis of β-cyclodextrin nitrates. Russian Journal of Applied Chemistry, 2014, 87, 1884-1889.	0.1	11
15	Properties of complex ammonium nitrate-based fertilizers depending on the degree of phosphoric acid ammoniation. International Journal of Industrial Chemistry, 2017, 8, 315-327.	3.1	11
16	Kinetics and Mechanism of Thermal Decomposition of Guanidinium Nitrate and Its Mixtures with Ammonium Nitrate. Russian Journal of Applied Chemistry, 2004, 77, 1083-1091.	0.1	9
17	Critical phenomena in acetone oxidation by nitric acid. Russian Chemical Bulletin, 2008, 57, 2065-2071.	0.4	9
18	Energetic properties and impact sensitivity of crystalline explosives. Russian Journal of Physical Chemistry B, 2014, 8, 701-711.	0.2	9

#	Article	IF	CITATIONS
19	Thermochemical and Energy Characteristics of DAzFF and AzNTF. Combustion, Explosion and Shock Waves, 2019, 55, 148-155.	0.3	9
20	Structure and properties of cocrystals of trinitrotoluene and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Russian Chemical Bulletin, 2013, 62, 1354-1360.	0.4	8
21	Thermochemical and Energy Characteristics of 1,4-Diethynylbenzene. Combustion, Explosion and Shock Waves, 2019, 55, 644-647.	0.3	8
22	Thermochemical and Energy Characteristics of N-(2,2-bis(methoxy-NNO-azoxy)ethyl)nitramines. Combustion, Explosion and Shock Waves, 2020, 56, 464-470.	0.3	8
23	Kinetics of heat release during decomposition of cellulose. Combustion, Explosion and Shock Waves, 1993, 29, 710-713.	0.3	7
24	Experimental determination of the standard enthalpy of formation of 4H,8H-bis(furazano)[3,4-b:3′,4′-e]pyrazine and evaluation of its performance as a dispersant of solid fuels. Russian Chemical Bulletin, 2019, 68, 1856-1859.	0.4	7
25	Equilibrium constants of nitration of alcohols and thermal stability of their nitrates. Russian Chemical Bulletin, 1997, 46, 1707-1709.	0.4	6
26	Murmanite and lomonosovite as Ag-selective ionites: kinetics and products of ion exchange in aqueous AgNO3 solutions. Physics and Chemistry of Minerals, 2013, 40, 625-633.	0.3	5
27	Supramolecular structuring of aqueous solutions of strong acids: manifestations in light scattering, NMR, and oxidation kinetics. Does liquid have a drop-like nature? 1. Nitric acid. Russian Chemical Bulletin, 2018, 67, 1838-1850.	0.4	5
28	Effect of Impurities on Thermal Decomposition Kinetics of Mineral Fertilizers Based on (NH4)2HPO4 in Self-Generated Atmosphere. Russian Journal of Applied Chemistry, 2018, 91, 1057-1067.	0.1	5
29	Kinetic Fundamental Aspects of Heat Release in Thermal Decomposition of 7-Amino-7H-difurazano[3,4-b:3′4′-f] furoxano[3″4″-d]azepine and Binary Fuel on Its Basis. Russian Jou Applied Chemistry, 2019, 92, 1696-1704.	ırn əl Df	5
30	Ethinyl Aromatic Hydrocarbon Derivatives as Possible Solid Fuel Dispersants. Russian Journal of Physical Chemistry B, 2020, 14, 579-586.	0.2	5
31	Kinetics of heat release during the reaction ofn-decane with nitrogen dioxide in the liquid phase. Russian Chemical Bulletin, 1997, 46, 1694-1699.	0.4	4
32	Kinetic regularities of the heat release during the reactions of aliphatic hydrocarbons with aqueous HNO3. Russian Chemical Bulletin, 1998, 47, 32-38.	0.4	4
33	Kinetics of Oxidation of Organic Acids by Ammonium Nitrate. Russian Journal of Applied Chemistry, 2003, 76, 1214-1220.	0.1	4
34	Standard enthalpies of formation of some N-spiranes. Russian Chemical Bulletin, 2011, 60, 1810-1813.	0.4	3
35	Kinetics of cation exchange on hetero-framework microporous titano- and zirconosilicates. Russian Journal of Physical Chemistry B, 2011, 5, 278-283.	0.2	3
36	Thermochemical and Energy Characteristics of Symmetric Nitro and Azido Derivatives of Diazen-Ter-Furazans. Combustion, Explosion and Shock Waves, 2020, 56, 301-307.	0.3	3

Ανατοιύ Καζακον

#	Article	IF	CITATIONS
37	Influence of the Solvent's Polarity on the Rate of Thermal Decomposition of Nitropyrazoles. Russian Journal of Physical Chemistry B, 2021, 15, 74-80.	0.2	3
38	Regularities in the Dependence of the Enthalpies of Formation of Certain Conjugated Polynitrogen Heterocyclic Compounds on Their Structure. Russian Journal of Applied Chemistry, 2020, 93, 1852-1867.	0.1	3
39	Kinetic Aspects and Heats of Reaction between Components in Thermal Decomposition of Ammonium Nitrate-Calcium (Magnesium) Carbonate Mixtures. Russian Journal of Applied Chemistry, 2005, 78, 1795-1800.	0.1	2
40	Kinetics and mechanism of the leaching of sodium from A-terskite and its influence on ion-exchange properties. Russian Journal of Physical Chemistry B, 2011, 5, 284-289.	0.2	2
41	Standard Enthalpy of Formation of the Bimolecular Crystal of CL-20 with Tris-Oxadiazolo-Azepine and Its Thermal Stability. Combustion, Explosion and Shock Waves, 2018, 54, 89-96.	0.3	2
42	Thermochemical and Energy Characteristics of Dimers of Terfurazanoazepines. Combustion, Explosion and Shock Waves, 2020, 56, 621-628.	0.3	2
43	Heat release kinetics in the reaction of decane with nitric acid. Russian Chemical Bulletin, 1996, 45, 1883-1888.	0.4	1
44	Influence of γ-irradiation on the kinetics of heat release during the interaction of an aqueous solution of HNO3 with aliphatic hydrocarbons. Russian Chemical Bulletin, 1998, 47, 1084-1088.	0.4	1
45	Kinetics and Mechanism of Thermal Decomposition of a Mixture of Ammonium Nitrate and Pyroxylin. Russian Journal of Applied Chemistry, 2005, 78, 870-879.	0.1	1
46	Kinetics and Mechanism of Thermolysis of Mixtures of Ammonium Nitrate with Polynitro Compounds. Russian Journal of Applied Chemistry, 2005, 78, 1937-1943.	0.1	1
47	Thermal decomposition study of chloride-containing complex ammonium nitrate-based fertilizers by thermogravimetry and differential scanning calorimetry. Russian Journal of Applied Chemistry, 2016, 89, 1383-1392.	0.1	1
48	lgnition of Metal Boride Particle–Air Mixtures. Combustion, Explosion and Shock Waves, 2020, 56, 63-70.	0.3	1
49	Heat production kinetics and the scope for thermal self-ignition in wheat drying. Combustion, Explosion and Shock Waves, 1994, 30, 54-58.	0.3	0
50	Model for thermal self-ignition of two-phase system in a batch reactor. Russian Chemical Bulletin, 2012, 61, 1049-1056.	0.4	0
51	Kinetics of thermoinitiated oligomerization of 3,3′-(2,4,6-triethyl-1,3-phenylene)bis(5-methyl-1,2,4-oxadiazole). Russian Chemical Bulletin, 2013, 62, 1434-1441.	0.4	0
52	Kinetics of Thermal Decomposition of Solid Propellant Based on Aluminum and Ammonium Perchlorate. Russian Journal of Applied Chemistry, 2019, 92, 1558-1569.	0.1	0
53	Effect of Gaseous Products on the Kinetics of Thermal Decomposition of Chloride-Containing Complex Ammonium Nitrate-Based Fertilizers. Russian Journal of Applied Chemistry, 2020, 93, 352-361.	0.1	0