Min Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4196472/publications.pdf

Version: 2024-02-01

713332 623574 36 509 14 21 citations h-index g-index papers 572 36 36 36 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Interactions of model airborne particulate matter with dipalmitoyl phosphatidylcholine and a clinical surfactant Calsurf. Journal of Colloid and Interface Science, 2022, 607, 1993-2009.	5.0	3
2	A novel CWPO/H ₂ O ₂ /VUV synergistic treatment for the degradation of unsymmetrical dimethylhydrazine in wastewater. Environmental Technology (United Kingdom), 2021, 42, 479-491.	1.2	5
3	Visible-light-driven photo-Fenton degradation of ceftriaxone sodium using SnS ₂ /LaFeO ₃ composite photocatalysts. New Journal of Chemistry, 2021, 45, 18933-18946.	1.4	11
4	Aggregation of $\hat{A}^240/42$ chains in the presence of cyclic neuropeptides investigated by molecular dynamics simulations. PLoS Computational Biology, 2021, 17, e1008771.	1.5	5
5	A Z-scheme iron-based hollow microsphere with enhanced photocatalytic performance for tetracycline degradation. Journal of Materials Research, 2021, 36, 1600-1613.	1.2	4
6	Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection. Chemical Research in Chinese Universities, 2021, 37, 366-378.	1.3	5
7	The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 2021, 13, 1854.	2.0	88
8	Direct conversion of cellulose to 5-hydroxymethylfurfural over SnNb2O6–ZrO2 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 903-918.	0.8	5
9	Heterogeneous Photoâ€Fenton Catalytic Oxidation of Ciprofloxacin Using LaFeO ₃ /Diatomite Composite Photocatalysts under Visible Light. ChemistrySelect, 2020, 5, 14792-14799.	0.7	17
10	Preparation of organic–inorganic intumescent flame retardant with phosphorus, nitrogen and silicon and its flame retardant effect for epoxy resin. Journal of Applied Polymer Science, 2020, 137, 49256.	1.3	16
11	Synthesis of a novel modified chitosan as an intumescent flame retardant for epoxy resin. E-Polymers, 2020, 20, 303-316.	1.3	27
12	Mechanistic Understanding and Nanomechanics of Multiple Hydrogen-Bonding Interactions in Aqueous Environment. Journal of Physical Chemistry C, 2019, 123, 4540-4548.	1.5	19
13	Cost-Effective Strategy for Surface Modification via Complexation of Disassembled Polydopamine with Fe(III) Ions. Langmuir, 2019, 35, 4101-4109.	1.6	26
14	Preparation of isometric Liesegang patterns and application in multi-pulsed drug release system. Journal of Sol-Gel Science and Technology, 2019, 91, 216-224.	1.1	6
15	Chitosan–silica nanoparticles catalyst (M@CS–SiO2) for the degradation of 1,1-dimethylhydrazine. Research on Chemical Intermediates, 2019, 45, 1721-1735.	1.3	16
16	Tuning protein adsorption on charged polyelectrolyte brushes via salinity adjustment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 37-45.	2.3	19
17	Preparation of poly(NaSSâ€∢i>co∢/i>â€HEMA) selfâ€supporting nanofiltration membrane with high cationic permselectivity by electrospinning. Journal of Applied Polymer Science, 2017, 134, 45541.	1.3	1
18	Preparation of a poly(DMAEMA-co-HEMA) self-supporting microfiltration membrane with high anionic permselectivity by electrospinning. E-Polymers, 2017, 17, 149-157.	1.3	8

#	Article	IF	CITATIONS
19	PMAA-based RAFT dispersion polymerization of MMA in ethanol: conductivity, block length and self-assembly. RSC Advances, 2016, 6, 58218-58225.	1.7	7
20	Catalyst for the degradation of 1,1-dimethylhydrazine and its by-product N-nitrosodimethylamine in propellant wastewater. RSC Advances, 2016, 6, 5677-5687.	1.7	22
21	Electrocatalytic Behavior of Hemoglobin Oxidation of Hydrazine Based on ZnO Nano-rods with Carbon Nanofiber Modified Electrode. Analytical Sciences, 2015, 31, 1027-1033.	0.8	10
22	Sensitive Hydrazine Electrochemical Biosensor Based on a Porous Chitosan–Carbon Nanofiber Nanocomposite Modified Electrode. Analytical Letters, 2015, 48, 1551-1569.	1.0	16
23	Preparation of pH-sensitive nanoparticles of poly (methacrylic acid) (PMAA)/poly (vinyl pyrrolidone) (PVP) by ATRP-template miniemulsion polymerization in the aqueous solution. Colloid and Polymer Science, 2015, 293, 2035-2044.	1.0	12
24	ATRP-template dispersion polymerization of methacrylic Acid/PVP. Chinese Journal of Polymer Science (English Edition), 2014, 32, 476-487.	2.0	5
25	Partition of initiators in quasi-static precipitation polymerization of AAm/MAc. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1400-1412.	2.0	9
26	Charges of soluble amphiphiles and particles: random and diblock copolymerizations of MAA/AAm, MAA/St, and MAA/4VP in ethanol. Colloid and Polymer Science, 2014, 292, 1553-1565.	1.0	7
27	Three dimension Liesegang rings of calcium hydrophosphate in gelatin. Journal of Sol-Gel Science and Technology, 2014, 71, 597-605.	1.1	12
28	Preparation of charged mosaic membrane of sodium polystyrene sulfonate and poly(4â€vinyl pyridine) by conjugate electrospinning. Journal of Applied Polymer Science, 2014, 131, .	1.3	10
29	Preparation and sintering properties in air of silver-coated copper powders and pastes. Journal of Materials Science: Materials in Electronics, 2013, 24, 4913-4918.	1.1	10
30	ZrO ₂ â€"MoO ₃ for the Acetalization of 1,3-Propanediol from Dilute Solutions. Industrial & Discrete Research, 2012, 51, 6304-6309.	1.8	16
31	Preparation and Characterization of Monodispersed Microfloccules of TiO2 Nanoparticles with Immobilized Multienzymes. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3300-3307.	4.0	25
32	4-Chloro-6,7-dimethoxyquinoline. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3012-o3012.	0.2	2
33	Improvement of dye-sensitized solar cell performance through electrodepositing a close-packed TiO2 film. Journal of Solid State Electrochemistry, 2010, 14, 857-863.	1.2	16
34	Effective SO4 2â^'/TiO2â€"ZrO2 for preparation and hydrolysis of 1,3-propanediol acetals. Reaction Kinetics, Mechanisms and Catalysis, 2010, 100, 337.	0.8	1
35	Quasi-static particle formation of poly(acrylamide/methacrylic acid) in ethanol by using V-65 as initiator. Polymer Chemistry, 2010, $1,899$.	1.9	12
36	Microbial Production of 1,3-Propanediol by Klebsiella pneumoniae XJPD-Li under Different Aeration Strategies. Applied Biochemistry and Biotechnology, 2009, 152, 127-134.	1.4	36