
Nadine Salzmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/419626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brief communication: Application of a muonic cosmic ray snow gauge to monitor the snow water equivalent on alpine glaciers. Cryosphere, 2022, 16, 799-806.	1.5	2
2	Continuous Spatio-Temporal High-Resolution Estimates of SWE Across the Swiss Alps – A Statistical Two-Step Approach for High-Mountain Topography. Frontiers in Earth Science, 2021, 9, .	0.8	6
3	An Integrative and Joint Approach to Climate Impacts, Hydrological Risks and Adaptation in the Indian Himalayan Region. , 2020, , 553-573.		3
4	Can Weather Radars Be Used to Estimate Snow Accumulation on Alpine Glaciers? An Evaluation Based on Glaciological Surveys. Journal of Hydrometeorology, 2020, 21, 2943-2962.	0.7	7
5	Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes. Cryosphere, 2019, 13, 2977-3005.	1.5	64
6	Continuous and autonomous snow water equivalent measurements by a cosmic ray sensor on an alpine glacier. Cryosphere, 2019, 13, 3413-3434.	1.5	29
7	Climate change research in bilateral development programmes: experiences from India and Peru. Development in Practice, 2019, 29, 336-348.	0.6	1
8	Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth-Science Reviews, 2018, 176, 195-213.	4.0	203
9	Comparison of climatic trends and variability among glacierized environments in the Western Himalayas. Theoretical and Applied Climatology, 2018, 134, 155-163.	1.3	8
10	Glacier Monitoring and Capacity Building: Important Ingredients for Sustainable Mountain Development. Mountain Research and Development, 2017, 37, 141-152.	0.4	10
11	The freezing level in the tropical Andes, Peru: An indicator for present and future glacier extents. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5172-5189.	1.2	52
12	Climate corridors for strategic adaptation planning. International Journal of Climate Change Strategies and Management, 2017, 9, 811-828.	1.5	1
13	Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia. Geoscientific Instrumentation, Methods and Data Systems, 2017, 6, 397-418.	0.6	29
14	Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland. Cryosphere, 2016, 10, 2693-2719.	1.5	25
15	Estimation of snowfall limit for the Kashmir Valley, Indian Himalayas, with TRMMÂPR Bright Band information. Meteorologische Zeitschrift, 2016, 25, 501-509.	0.5	5
16	Mass Balance Re-analysis of Findelengletscher, Switzerland; Benefits of Extensive Snow Accumulation Measurements. Frontiers in Earth Science, 2016, 4, .	0.8	40
17	Robust climate scenarios for sites with sparse observations: a twoâ€step bias correction approach. International Journal of Climatology, 2016, 36, 1226-1243.	1.5	44
18	Scientific Knowledge and Knowledge Needs in Climate Adaptation Policy: A Case Study of Diverse Mountain Regions. Mountain Research and Development, 2016, 36, 364.	0.4	22

NADINE SALZMANN

#	Article	IF	CITATIONS
19	The Projected Precipitation Reduction over the Central Andes may Severely Affect Peruvian Glaciers and Hydropower Production. Energy Procedia, 2016, 97, 270-277.	1.8	13
20	Science in the Context of Climate Change Adaptation: Case Studies from the Peruvian Andes. , 2016, , 41-58.		1
21	Setting the Scene: Adapting to Climate Change – A Large-Scale Challenge with Local-Scale Impacts. , 2016, , 3-15.		0
22	Permafrost Studies in Kullu District, Himachal Pradesh. Current Science, 2016, 111, 550.	0.4	24
23	Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. Environmental Research Letters, 2015, 10, 084017.	2.2	65
24	Temperature, precipitation and related extremes in mountain areas. , 2015, , 28-49.		7
25	How useful and reliable are disaster databases in the context of climate and global change? A comparative case study analysis in Peru. Natural Hazards and Earth System Sciences, 2015, 15, 475-485.	1.5	44
26	Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya. Journal of Glaciology, 2015, 61, 675-688.	1.1	58
27	Re-analysis of seasonal mass balance at Abramov glacier 1968–2014. Journal of Glaciology, 2015, 61, 1103-1117.	1.1	59
28	A framework for the science contribution in climate adaptation: Experiences from science-policy processes in the Andes. Environmental Science and Policy, 2015, 47, 80-94.	2.4	45
29	Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. Cryosphere, 2014, 8, 2313-2333.	1.5	203
30	Data and knowledge gaps in glacier, snow and related runoff research – A climate change adaptation perspective. Journal of Hydrology, 2014, 518, 225-234.	2.3	41
31	High uncertainty in 21st century runoff projections from glacierized basins. Journal of Hydrology, 2014, 510, 35-48.	2.3	89
32	Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Global and Planetary Change, 2014, 119, 85-97.	1.6	113
33	Modeled sensitivity of two alpine permafrost sites to RCMâ€based climate scenarios. Journal of Geophysical Research F: Earth Surface, 2013, 118, 780-794.	1.0	54
34	Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Science of the Total Environment, 2013, 468-469, S60-S70.	3.9	47
35	Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere, 2013, 7, 103-118.	1.5	101
36	Permafrost model sensitivity to seasonal climatic changes and extreme events in mountainous regions. Environmental Research Letters, 2013, 8, 035048.	2.2	41

NADINE SALZMANN

#	Article	IF	CITATIONS
37	Towards remote monitoring of sub-seasonal glacier mass balance. Annals of Claciology, 2013, 54, 75-83.	2.8	34
38	Assessing the Performance of Multiple Regional Climate Model Simulations for Seasonal Mountain Snow in the Upper Colorado River Basin. Journal of Hydrometeorology, 2012, 13, 539-556.	0.7	39
39	The Swiss Alpine glaciers' response to the global â€~2 °C air temperature target'. Environmental Re Letters, 2012, 7, 044001.	search 2.2	23
40	Early warning systems: The "last mile―of adaptation. Eos, 2012, 93, 209-210.	0.1	8
41	The potential of new measurement and modelling techniques in alpine cryosphere and geomorphology research. Geographica Helvetica, 2012, 67, 26-37.	0.4	0
42	Influence of atmospheric forcing parameters on modelled mountain permafrost evolution. Meteorologische Zeitschrift, 2010, 19, 491-500.	0.5	21
43	Recent and future warm extreme events and high-mountain slope stability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2435-2459.	1.6	147
44	Providing scientific basis for climate change adaptation strategies in the Andes region. IOP Conference Series: Earth and Environmental Science, 2009, 6, 392009.	0.2	1
45	IN BOX. Bulletin of the American Meteorological Society, 2008, 89, 1275-1284.	1.7	15
46	The application of Regional Climate Model output for the simulation of high-mountain permafrost scenarios. Global and Planetary Change, 2007, 56, 188-202.	1.6	72
47	Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results. Journal of Geophysical Research, 2007, 112, .	3.3	40
48	Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. Journal of Geophysical Research, 2007, 112, .	3.3	196
49	Influence of different digital terrain models (DTMs)on alpine permafrost modeling. Environmental Modeling and Assessment, 2007, 12, 303-313.	1.2	0
50	Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview. Natural Hazards and Earth System Sciences, 2005, 5, 527-554.	1.5	217
51	Assessment of the hazard potential of ice avalanches using remote sensing and GISâ€modelling. Norsk Geografisk Tidsskrift, 2004, 58, 74-84.	0.3	50
52	GISâ€based modeling of glacial hazards and their interactions using Landsatâ€īM and IKONOS imagery. Norsk Geografisk Tidsskrift, 2004, 58, 61-73.	0.3	36
53	Multi-sensor analysis of monthly gridded snow precipitation on alpine glaciers. Advances in Science and Research, 0, 18, 7-20.	1.0	4
54	Integrated assessment and adaptation to climate change impacts in the Peruvian Andes. Advances in Geosciences, 0, 22, 35-39.	12.0	25