Ping Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4196213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating Hydration Heat and Thermal Properties of MJS Treated Soil. KSCE Journal of Civil Engineering, 2022, 26, 1683-1694.	0.9	3
2	Experimental study on the shear behavior of frozen cemented sand-structure interface. Cold Regions Science and Technology, 2022, 197, 103516.	1.6	6
3	Experimental study on deformation characteristics of chloride silty clay during freeze-thaw in an open system. Cold Regions Science and Technology, 2022, 197, 103518.	1.6	7
4	Experimental evaluation of uniaxial strength and creep behavior of frozen gravel. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2022, 45, 195-204.	0.6	3
5	Characterizing Influence of Salt and Freeze–Thaw Cycle on Strength Properties of Clay. International Journal of Applied Mechanics, 2022, 14, .	1.3	1
6	Freeze-thaw impact on macropore structure of clay by 3D X-ray computed tomography. Engineering Geology, 2021, 280, 105921.	2.9	31
7	Investigating Influence of Metro Jet System Hydration Heat on Artificial Ground Freezing Using Numerical Analysis. KSCE Journal of Civil Engineering, 2021, 25, 724-734.	0.9	9
8	An Artificial Freezing Technique to Facilitate Shield Tail Brush Replacement under High Pore-Water Pressure Using Liquid Nitrogen. KSCE Journal of Civil Engineering, 2021, 25, 1504-1514.	0.9	6
9	Water and salt migration mechanisms of saturated chloride clay during freeze-thaw in an open system. Cold Regions Science and Technology, 2021, 186, 103277.	1.6	25
10	Characterizing the pore size distribution of a chloride silt soil during freeze–thaw processes via nuclear magnetic resonance relaxometry. Soil Science Society of America Journal, 2020, 84, 1577-1591.	1.2	19
11	Electrical properties of frozen saline clay and their relationship with unfrozen water content. Cold Regions Science and Technology, 2020, 178, 103127.	1.6	23
12	A model for evaluating settlement of clay subjected to freeze-thaw under overburden pressure. Cold Regions Science and Technology, 2020, 173, 102996.	1.6	12
13	A Study on Micro-Pore Characteristics of Clay Due to Freeze-Thaw and Compression by Mercury Intrusion Porosimetry. Frontiers in Earth Science, 2020, 7, .	0.8	15
14	In situ monitoring of temperature and deformation fields of a tunnel cross passage in Changzhou Metro constructed by AGF. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	12
15	Impact of freeze-thaw on the physical properties and compressibility of saturated clay. Cold Regions Science and Technology, 2019, 168, 102873.	1.6	32
16	Ground temperature characteristics during artificial freezing around a subway cross passage. Transportation Geotechnics, 2019, 20, 100250.	2.0	39
17	Characterization of freeze–thaw effects within clay by 3D X-ray Computed Tomography. Cold Regions Science and Technology, 2018, 148, 13-21.	1.6	41
18	Effect of Osmotic Pressure on Migration Behavior of nZnO in GCLs. Advances in Civil Engineering, 2018, 2018, 1-9.	0.4	1

Ping Yang

#	Article	IF	CITATIONS
19	Interface shear characteristics of dredger fill and concrete using large size direct shear test. International Journal of Geo-Engineering, 2018, 9, 1.	0.9	9
20	Structural change and volumetric shrinkage of clay due to freeze-thaw by 3D X-ray computed tomography. Cold Regions Science and Technology, 2017, 138, 108-116.	1.6	38
21	Cyclic direct shear behaviors of an artificial frozen soil-structure interface under constant normal stress and sub-zero temperature. Cold Regions Science and Technology, 2017, 133, 70-81.	1.6	24
22	Strength and Stiffness of Stabilized Alluvial Silt under Frost Actions. Advances in Materials Science and Engineering, 2017, 2017, 1-13.	1.0	2
23	Synthesis, structure, and luminescence of a coordination polymer from fumaropimaric acid and a water cluster. Journal of Coordination Chemistry, 2015, 68, 1238-1250.	0.8	1
24	Resilient and plastic strain behavior of freezing–thawing mucky clay under subway loading in Shanghai. Natural Hazards, 2014, 72, 771-787.	1.6	15
25	Field experiments and numerical simulations of whirlpool foundation pit dewatering. Environmental Earth Sciences, 2014, 71, 3245-3257.	1.3	18
26	Cyclic direct shear behaviors of frozen soil–structure interface under constant normal stiffness condition. Cold Regions Science and Technology, 2014, 102, 52-62.	1.6	25
27	Impacts of surface roughness and loading conditions on cyclic direct shear behaviors of an artificial frozen silt–structure interface. Cold Regions Science and Technology, 2014, 106-107, 183-193.	1.6	22
28	Erosion-creep-collapse mechanism of underground soil loss for the karst rocky desertification in Chenqi village, Puding county, Guizhou, China. Environmental Earth Sciences, 2014, 72, 2751-2764.	1.3	81
29	Fractal characteristics and stability of soil aggregates in karst rocky desertification areas. Natural Hazards, 2013, 65, 563-579.	1.6	29
30	Controlling subsidence caused by de-watering in a deep foundation pit. Bulletin of Engineering Geology and the Environment, 2012, 71, 545-555.	1.6	50
31	Theoretical and experimental study of consolidation settlement characteristics of hydraulic fill soil in Shanghai. Environmental Earth Sciences, 2012, 67, 1397-1405.	1.3	8
32	Inference of creep mechanism in underground soil loss of karst conduits I. Conceptual model. Natural Hazards, 2012, 62, 1191-1215.	1.6	43
33	Study on land subsidence under different plot ratios through centrifuge model test in soft-soil territory. Environmental Earth Sciences, 2012, 66, 1809-1816.	1.3	9
34	Quantitative analysis of the microstructure of Shanghai muddy clay before and after freezing. Bulletin of Engineering Geology and the Environment, 2012, 71, 309-316.	1.6	43
35	Test on cyclic creep behavior of mucky clay in Shanghai under step cyclic loading. Environmental Earth Sciences, 2011, 63, 321-327.	1.3	28
36	Characteristics of red clay creep in karst caves and loss leakage of soil in the karst rocky desertification area of Puding County, Guizhou, China. Environmental Earth Sciences, 2011, 63, 543-549.	1.3	35

Ping Yang

#	Article	IF	CITATIONS
37	Model test of the tunnel subjected to high water pressure in Jinping Second Cascade Hydropower Station, China. Science China Technological Sciences, 2011, 54, 192-198.	2.0	1
38	Hydraulic barrier function of the underground continuous concrete wall in the pit of subway station and its optimization. Environmental Geology, 2009, 57, 447-453.	1.2	55
39	Characteristics of deformation of saturated soft clay under the load of Shanghai subway line No.Â2. Environmental Geology, 2008, 54, 1197-1203.	1.2	12
40	Numerical simulation of frost heave with coupled water freezing, temperature and stress fields in tunnel excavation. Computers and Geotechnics, 2006, 33, 330-340.	2.3	95
41	APPLICATION OF FREEZING METHOD TO RECOVER TUNNEL ACCIDENT IN COMPLEX STRATUM OF NANJING SUBWAY. , 2005, , .		2
42	Investigation of Frost-Heaving Characteristics of Horizontal- Cup-Shape Frozen Ground Surface for Reinforced End Soil Mass in Shield Tunnel Construction. Periodica Polytechnica: Civil Engineering, 0, ,	0.6	5