Anindya Nag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4196211/publications.pdf Version: 2024-02-01

ΔΝΙΝΟΥΛ ΝΛΟ

#	Article	IF	CITATIONS
1	Internet of Things (IoT)-Enabled Pedestrian Counting in a Smart City. Algorithms for Intelligent Systems, 2022, , 89-104.	0.6	3
2	IoT-Based Laser-Inscribed Sensors for Electrochemical Detection of Phosphate Ions. Algorithms for Intelligent Systems, 2022, , 79-88.	0.6	0
3	Fabrication and implementation of carbon nanotubes for piezoresistive-sensing applications: A review. Journal of Science: Advanced Materials and Devices, 2022, 7, 100416.	3.1	10
4	Integration of Different Graphene Nanostructures with PDMS to Form Wearable Sensors. Nanomaterials, 2022, 12, 950.	4.1	16
5	The selfâ€assembled zein hydrolysate–curcumin nanocomplex: improvement on the stability and sustainable release of curcumin. Journal of the Science of Food and Agriculture, 2022, 102, 5729-5737.	3.5	7
6	Carbon Fiber/Polymer-Based Composites for Wearable Sensors: A Review. IEEE Sensors Journal, 2022, 22, 10235-10245.	4.7	8
7	Physicochemical and rheological properties of interacted protein hydrolysates derived from tuna processing byâ€products with sodium alginate. International Journal of Food Science and Technology, 2022, 57, 5132-5143.	2.7	3
8	Development, characterization and in vitro bile salts binding capacity of selenium nanoparticles stabilized by soybean polypeptides. Food Chemistry, 2022, 391, 133286.	8.2	5
9	Alteration in dough volume and gluten network of lychee pulp pomace bread base on mixture design dominated by particle size. Journal of Food Science, 2022, 87, 3026-3035.	3.1	1
10	Novel Surfactant-Induced MWCNTs/PDMS-Based Nanocomposites for Tactile Sensing Applications. Materials, 2022, 15, 4504.	2.9	7
11	A critical review of the recent progress on carbon nanotubes-based nanogenerators. Sensors and Actuators A: Physical, 2022, 344, 113743.	4.1	14
12	Reduced graphene oxide-based composites for wearable strain-sensing applications. Sensors and Actuators A: Physical, 2022, 345, 113767.	4.1	4
13	Wearable Sensors for Healthcare: Fabrication to Application. Sensors, 2022, 22, 5137.	3.8	31
14	Recent Advancement of Interdigital Sensor for Nitrate Monitoring in Water. Smart Sensors, Measurement and Instrumentation, 2021, , 311-328.	0.6	0
15	Recent progress for nanotechnology-based flexible sensors for biomedical applications. , 2021, , 379-428.		1
16	Multi-Walled Carbon Nanotubes-Based Sensors for Strain Sensing Applications. Sensors, 2021, 21, 1261.	3.8	60
17	Soy protein-polysaccharide complex coacervate under physical treatment: Effects of pH, ionic strength and polysaccharide type. Innovative Food Science and Emerging Technologies, 2021, 68, 102612.	5.6	29
18	Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activities. Applied Materials Today, 2021, 22, 100953.	4.3	18

Anindya Nag

#	Article	IF	CITATIONS
19	Electrochemical Detection of Glucose Molecules Using Laser-Induced Graphene Sensors: A Review. Sensors, 2021, 21, 2818.	3.8	14
20	A Review of the Use of Carbon Nanotubes and Graphene-Based Sensors for the Detection of Aflatoxin M1 Compounds in Milk. Sensors, 2021, 21, 3602.	3.8	17
21	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	1.8	49
22	Fabrication of Interdigitated Sensors: Issues and Resolution. Smart Sensors, Measurement and Instrumentation, 2021, , 35-69.	0.6	0
23	Novel Zn-Binding Peptide Isolated from Soy Protein Hydrolysates: Purification, Structure, and Digestion. Journal of Agricultural and Food Chemistry, 2021, 69, 483-490.	5.2	19
24	Reduced Graphene Oxide for the Development of Wearable Mechanical Energy-Harvesters: A Review. IEEE Sensors Journal, 2021, 21, 26415-26425.	4.7	6
25	Use of graphene-based fabric sensors for monitoring human activities. Sensors and Actuators A: Physical, 2021, 332, 113172.	4.1	9
26	Wearable Sensors and Systems in the IoT. Sensors, 2021, 21, 7880.	3.8	8
27	A comprehensive review of the use of sensors for food intake detection. Sensors and Actuators A: Physical, 2020, 315, 112318.	4.1	9
28	A review on fabrication, characterization and implementation of wearable strain sensors. Sensors and Actuators A: Physical, 2020, 315, 112355.	4.1	79
29	A Review on the Use of Impedimetric Sensors for the Inspection of Food Quality. International Journal of Environmental Research and Public Health, 2020, 17, 5220.	2.6	26
30	Electrochemical detection of calcium and magnesium in water bodies. Sensors and Actuators A: Physical, 2020, 305, 111949.	4.1	26
31	Interdigital sensors: Biomedical, environmental and industrial applications. Sensors and Actuators A: Physical, 2020, 305, 111923.	4.1	40
32	Recent Progress in 3D Printed Mold-Based Sensors. Sensors, 2020, 20, 703.	3.8	37
33	IoT-Based Laser-Inscribed Sensors for Detection of Sulfate in Water Bodies. IEEE Access, 2020, 8, 228879-228890.	4.2	12
34	Multifunctional Flexible Sensor Based on Laser-Induced Graphene. Sensors, 2019, 19, 3477.	3.8	66
35	Silicon-Based Sensors for Biomedical Applications: A Review. Sensors, 2019, 19, 2908.	3.8	86
36	Gold/Polyimide-Based Resistive Strain Sensors. Electronics (Switzerland), 2019, 8, 565.	3.1	33

ANINDYA NAG

#	Article	IF	CITATIONS
37	3D Printed Sensors for Biomedical Applications: A Review. Sensors, 2019, 19, 1706.	3.8	150
38	Conclusion, Challenges and Future Work. Smart Sensors, Measurement and Instrumentation, 2019, , 193-198.	0.6	0
39	Carbon Nanotubes-Polydimethylsiloxane Sensor. Smart Sensors, Measurement and Instrumentation, 2019, , 91-114.	0.6	0
40	Laser-Assisted Printed Flexible Sensors: A Review. Sensors, 2019, 19, 1462.	3.8	50
41	Graphite-Polyimide Sensor. Smart Sensors, Measurement and Instrumentation, 2019, , 129-168.	0.6	0
42	Interdigitated Sensing and Electrochemical Impedance Spectroscopy. Smart Sensors, Measurement and Instrumentation, 2019, , 83-89.	0.6	1
43	Carbon nanotubes and its gas-sensing applications: A review. Sensors and Actuators A: Physical, 2019, 291, 107-143.	4.1	190
44	Graphite-Polydimethylsiloxane Sensor. Smart Sensors, Measurement and Instrumentation, 2019, , 169-192.	0.6	0
45	Localisation of thin- film resistive sensors for force sensing applications. , 2019, , .		1
46	loT-based sensing system for phosphate detection using Graphite/PDMS sensors. Sensors and Actuators A: Physical, 2019, 286, 43-50.	4.1	61
47	Impedimetric microsensors for biomedical applications. Current Opinion in Biomedical Engineering, 2019, 9, 1-7.	3.4	6
48	Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications. , 2019, , 245-284.		1
49	Strain induced graphite/PDMS sensors for biomedical applications. Sensors and Actuators A: Physical, 2018, 271, 257-269.	4.1	87
50	Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 2018, 270, 177-194.	4.1	475
51	Performance analysis of flexible printed sensors for robotic arm applications. Sensors and Actuators A: Physical, 2018, 276, 226-236.	4.1	35
52	A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sensors and Actuators A: Physical, 2018, 269, 79-90.	4.1	85
53	Fabrication and implementation of printed sensors for taste sensing applications. Sensors and Actuators A: Physical, 2018, 269, 53-61.	4.1	50
54	Development of Novel Gold/PDMS Sensors for Medical Applications. , 2018, , .		1

4

ANINDYA NAG

#	Article	IF	CITATIONS
55	pH Sensing of Printed Flexible Sensors. , 2018, , .		Ο
56	Development of Printed Sensors for Shoe Sensing Applications. , 2018, , .		1
57	A Transparent Strain Sensor Based on PDMS-Embedded Conductive Fabric for Wearable Sensing Applications. IEEE Access, 2018, 6, 71020-71027.	4.2	61
58	Development of an Internet of Things Based Electrochemical Microfluidic System for Free Calcium Detection. Applied Sciences (Switzerland), 2018, 8, 1357.	2.5	10
59	3D printed mould-based graphite/PDMS sensor for low-force applications. Sensors and Actuators A: Physical, 2018, 280, 525-534.	4.1	87
60	Wearable Flexible Sensors: A Review. IEEE Sensors Journal, 2017, 17, 3949-3960.	4.7	379
61	Sensing system for salinity testing using laser-induced graphene sensors. Sensors and Actuators A: Physical, 2017, 264, 107-116.	4.1	84
62	Flexible Printed Sensors for Ubiquitous Human Monitoring. Smart Sensors, Measurement and Instrumentation, 2017, , 135-157.	0.6	2
63	Tactile Sensing From Laser-Ablated Metallized PET Films. IEEE Sensors Journal, 2017, 17, 7-13.	4.7	62
64	Influence of temperature and humidity on carbon based printed flexible sensors. , 2017, , .		3
65	Development of printed sensors for taste sensing. , 2017, , .		1
66	Urinary incontinence monitoring system using laser-induced graphene sensors. , 2017, , .		7
67	Mathematical modelling of microbolometers at oblique incidence. , 2017, , .		Ο
68	Transparent biocompatible sensor patches for touch sensitive prosthetic limbs. , 2016, , .		11
69	Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sensors and Actuators A: Physical, 2016, 251, 148-155.	4.1	90
70	Novel Sensing Approach for LPG Leakage Detection—Part II: Effects of Particle Size, Composition, and Coating Layer Thickness. IEEE Sensors Journal, 2016, 16, 1088-1094.	4.7	43
71	Novel Sensing Approach for LPG Leakage Detection: Part l—Operating Mechanism and Preliminary Results. IEEE Sensors Journal, 2016, 16, 996-1003.	4.7	63
72	Printed electronics: Present and future opportunities. , 2015, , .		3

72 Printed electronics: Present and future opportunities. , 2015, , .

5

Anindya Nag

#	Article	IF	CITATIONS
73	Performance enhancement of electronic sensor through mask-less lithography. , 2015, , .		6
74	Improved detection limits for phthalates by selective solid-phase micro-extraction. , 2015, , .		3
75	Occupancy Detection at Smart Home Using Real-Time Dynamic Thresholding of Flexiforce Sensor. IEEE Sensors Journal, 2015, 15, 4457-4463.	4.7	29
76	Wearable Electronics Sensors: Current Status and Future Opportunities. Smart Sensors, Measurement and Instrumentation, 2015, , 1-35.	0.6	7
77	Smart Home: Recognition of activities of elderly for 24/7; Coverage issues. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1-10.	0.7	4
78	A REVIEW OF ENERGY OPTIMAL TOPOLOGY CONTROL FOR LARGE WIRELESS NETWORK USING YAO-GRAPH AND ITS VARIANTS. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 740-761.	0.7	0