
David C Mcgowan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4195984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of gene transcription by thyroid hormone receptor \hat{I}^2 agonists in clinical development for the treatment of non-alcoholic steatohepatitis (NASH). PLoS ONE, 2020, 15, e0240338.	2.5	17
2	Design, Synthesis, and Biological Evaluation of Novel Indoles Targeting the Influenza PB2 Cap Binding Region. Journal of Medicinal Chemistry, 2019, 62, 9680-9690.	6.4	21
3	Latest Advances in Small Molecule TLR 7/8 Agonist Drug Research. Current Topics in Medicinal Chemistry, 2019, 19, 2228-2238.	2.1	21
4	Discovery of selective 2,4-diaminoquinazoline toll-like receptor 7 (TLR 7) agonists. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 711-719.	2.2	12
5	2,4-Diaminoquinazolines as Dual Toll-like Receptor (TLR) 7/8 Modulators for the Treatment of Hepatitis B Virus. Journal of Medicinal Chemistry, 2018, 61, 6236-6246.	6.4	21
6	Design and synthesis of tetrahydropyridopyrimidine based Toll-Like Receptor (TLR) 7/8 dual agonists. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3216-3221.	2.2	9
7	Synthesis and evaluation of novel HCV replication inhibitors. Molecular Diversity, 2017, 21, 475-481.	3.9	2
8	Characterization of a dengue NS4B inhibitor originating from an HCV small molecule library. Antiviral Research, 2017, 147, 149-158.	4.1	17
9	Identification and Optimization of Pyrrolo[3,2- <i>d</i>]pyrimidine Toll-like Receptor 7 (TLR7) Selective Agonists for the Treatment of Hepatitis B. Journal of Medicinal Chemistry, 2017, 60, 6137-6151.	6.4	15
10	Novel Pyrimidine Toll-like Receptor 7 and 8 Dual Agonists to Treat Hepatitis B Virus. Journal of Medicinal Chemistry, 2016, 59, 7936-7949.	6.4	32
11	Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids. Organic Letters, 2015, 17, 4980-4983.	4.6	55
12	Discovery and Early Development of TMC647055, a Non-Nucleoside Inhibitor of the Hepatitis C Virus NS5B Polymerase. Journal of Medicinal Chemistry, 2014, 57, 1880-1892.	6.4	32
13	Finger-loop inhibitors of the HCV NS5b polymerase. Part 1: Discovery and optimization of novel 1,6- and 2,6-macrocyclic indole series. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4431-4436.	2.2	15
14	Finger loop inhibitors of the HCV NS5b polymerase. Part II. Optimization of tetracyclic indole-based macrocycle leading to the discovery of TMC647055. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4437-4443.	2.2	37
15	Structureâ€Based Macrocyclization Yields Hepatitisâ€C Virus NS5B Inhibitors with Improved Binding Affinities and Pharmacokinetic Properties. Angewandte Chemie - International Edition, 2012, 51, 4637-4640.	13.8	33
16	1,5-Benzodiazepine inhibitors of HCV NS5B polymerase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2492-2496.	2.2	52
17	Structure-Based Design of a Benzodiazepine Scaffold Yields a Potent Allosteric Inhibitor of Hepatitis C NS5B RNA Polymerase. Journal of Medicinal Chemistry, 2009, 52, 4099-4102.	6.4	49
18	Discovery of novel potent and selective dipeptide hepatitis C virus NS3/4A serine protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5095-5100.	2.2	27

DAVID C MCGOWAN

#	Article	IF	CITATIONS
19	Discovery of novel, potent and bioavailable proline-urea based macrocyclic HCV NS3/4A protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6189-6193.	2.2	24
20	Structure–activity relationship study on a novel series of cyclopentane-containing macrocyclic inhibitors of the hepatitis C virus NS3/4A protease leading to the discovery of TMC435350. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4853-4858.	2.2	130
21	Structure-Guided Design of Aminopyrimidine Amides as Potent, Selective Inhibitors of Lymphocyte Specific Kinase: Synthesis, Structure–Activity Relationships, and Inhibition of in Vivo T Cell Activation. Journal of Medicinal Chemistry, 2008, 51, 1681-1694.	6.4	21
22	Alkynylpyrimidine Amide Derivatives as Potent, Selective, and Orally Active Inhibitors of Tie-2 Kinase. Journal of Medicinal Chemistry, 2007, 50, 627-640.	6.4	28
23	Discovery of 4-amino-5,6-biaryl-furo[2,3-d]pyrimidines as inhibitors of Lck: Development of an expedient and divergent synthetic route and preliminary SAR. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2305-2309.	2.2	45
24	Discovery of novel 2,3-diarylfuro[2,3-b]pyridin-4-amines as potent and selective inhibitors of Lck: Synthesis, SAR, and pharmacokinetic properties. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2299-2304.	2.2	31
25	Novel 2-Aminopyrimidine Carbamates as Potent and Orally Active Inhibitors of Lck:  Synthesis, SAR, and in Vivo Antiinflammatory Activity. Journal of Medicinal Chemistry, 2006, 49, 4981-4991.	6.4	51
26	Discovery of Aminoquinazolines as Potent, Orally Bioavailable Inhibitors of Lck:  Synthesis, SAR, and in Vivo Anti-Inflammatory Activity. Journal of Medicinal Chemistry, 2006, 49, 5671-5686.	6.4	64