
Sadegh Biabanifard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4195982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reconfigurable narrow and wide band multi bias graphene based THz absorber. Optics and Laser Technology, 2022, 151, 107996.	2.2	22
2	A Graphene based bimetallic plasmonic waveguide to increase photorefractive effect. Waves in Random and Complex Media, 2021, 31, 2262-2274.	1.6	1
3	A graphene-based dual-band THz absorber design exploiting the impedance-matching concept. Journal of Computational Electronics, 2021, 20, 38-48.	1.3	23
4	Graphene-based multi-layers THz absorber: Circuit model representation. Optik, 2021, 227, 165596.	1.4	24
5	Multi-bias graphene-based THz super absorber. Results in Physics, 2021, 25, 104326.	2.0	24
6	Graphene-based THz absorber: adjustability via multiple gate biasing. Heliyon, 2021, 7, e07633.	1.4	22
7	Reliable design of THz absorbers based on graphene patterns: Exploiting genetic algorithm. Optik, 2020, 203, 163924.	1.4	40
8	Enhanced comparatorâ€based switchedâ€capacitor integrator using current conveyor. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2020, 33, e2729.	1.2	7
9	A configurable two-layer four-bias graphene-based THz absorber. Journal of Computational Electronics, 2020, 19, 719-735.	1.3	26
10	Control of terahertz waves for TE and TM modes using graphene-based metamaterials. Optical Engineering, 2020, 59, 1.	0.5	8
11	Four stage OTA CMOS frequency compensation based on double differential feedback paths. Analog Integrated Circuits and Signal Processing, 2019, 101, 155-168.	0.9	17
12	A highâ€performance CMOS fourâ€stage amplifier. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2019, 32, e2647.	1.2	13
13	Multi-bias, graphene-based reconfigurable THz absorber/reflector. Optik, 2019, 198, 163248.	1.4	28
14	Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik, 2019, 182, 433-442.	1.4	78
15	A reconfigurable multi-band, multi-bias THz absorber. Optik, 2019, 191, 22-32.	1.4	32
16	Nonlinear current source charge scheme for comparator based switched capacitor integrator. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2019, 32, e2542.	1.2	7
17	Enhancement of second harmonic generation using a novel asymmetric metal–graphene–insulator–metal plasmonic waveguide. Journal of Nonlinear Optical Physics and Materials, 2018, 27, 1850003.	1.1	2
18	Three stages CMOS operational amplifier frequency compensation using single Miller capacitor and differential feedback path. Analog Integrated Circuits and Signal Processing, 2018, 97, 195-205.	0.9	26

SADEGH BIABANIFARD

#	Article	IF	CITATIONS
19	Multi stage OTA design: From matrix description to circuit realization. Microelectronics Journal, 2018, 77, 49-65.	1.1	33
20	Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Optics Communications, 2018, 427, 418-425.	1.0	110
21	Enhancement of Second Harmonic Generation in Metal-Insulator-Metal Plasmonic Waveguides. Plasmonics, 2017, 12, 1781-1785.	1.8	1
22	4-channels coherent perfect absorption (CPA)-type demultiplexer using plasmonic nano spheres. Waves in Random and Complex Media, 2017, 27, 690-699.	1.6	1
23	Second harmonic generation using an electrically controlled asymmetric plasmonic waveguide. Journal of Experimental Nanoscience, 2017, 12, 104-113.	1.3	Ο
24	Corrugated-enhanced second harmonic generation in metal–insulator–metal plasmonic waveguides. Optical and Quantum Electronics, 2017, 49, 1.	1.5	2
25	Gain boosting of recycling folded cascode OTA using positive feedback and introducing new input path. Analog Integrated Circuits and Signal Processing, 2017, 90, 237-246.	0.9	37
26	Investigation of Second Harmonic Generation in Asymmetric Metal-Insulator-Metal Plasmonic Waveguides. Plasmonics, 2016, 11, 689-695.	1.8	1
27	A new approach for signal and noise FET modeling including wave propagation effects. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2015, 28, 755-766.	1.2	11
28	A new frequency compensation technique for three stages OTA by differential feedback path. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2015, 28, 381-388.	1.2	35
29	High speed switched-current memory cell with very low offset and charge injection errors. AEU - International Journal of Electronics and Communications, 2015, 69, 1627-1634.	1.7	5
30	High performance reversed nested Miller frequency compensation. Analog Integrated Circuits and Signal Processing, 2015, 85, 223-233.	0.9	46
31	High performance folded cascode OTA using positive feedback and recycling structure. Analog Integrated Circuits and Signal Processing, 2015, 82, 217-227.	0.9	55
32	DCCII based frequency compensation method for three stage amplifiers. AEU - International Journal of Electronics and Communications, 2015, 69, 176-181.	1.7	42
33	Combined skewed CMOS Ring Oscillator. Records of the Australian Museum, 2015, 4, 1-14.	0.3	3
34	Dealy Time Analysis of Combined CMOS Ring Oscillator. Electrical and Electronics Engineering an International Journal, 2015, 4, 53-64.	0.2	8
35	A Design Guide for Comparator-Based Switched-Capacitor Integrator. Electrical and Electronics Engineering an International Journal, 2015, 4, 87-95.	0.2	0
36	Bulk - Driven Current Conveyer Based - CMOS Analog Multiplier. Electrical and Electronics Engineering an International Journal, 2015, 4, 55-62.	0.2	4

#	ARTICLE	IF	CITATIONS
37	A new frequency compensation method based on differential current conveyor. , 2014, , .		14
38	A new SMC compensation strategy for three stage amplifiers based on differential feedback path. , 2014, , .		13
39	Design of ultra-low-power CMOS amplifiers based on flicker noise reduction. , 2014, , .		18
40	Design and analysis of DC gain and transconductance boosted recycling folded cascode OTA. AEU - International Journal of Electronics and Communications, 2014, 68, 1047-1052.	1.7	64