
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4195905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interpretable clinical time-series modeling with intelligent feature selection for early prediction of antimicrobial multidrug resistance. Future Generation Computer Systems, 2022, 133, 68-83.	7.5	12
2	FCE: Feedback Based Counterfactual Explanations for Explainable AI. IEEE Access, 2022, 10, 72363-72372.	4.2	8
3	Design and Validation of an Explainable Fuzzy Beer Style Classifier. Studies in Computational Intelligence, 2021, , 169-217.	0.9	3
4	Explainable Fuzzy Systems. Studies in Computational Intelligence, 2021, , .	0.9	33
5	A Survey of Contrastive and Counterfactual Explanation Generation Methods for Explainable Artificial Intelligence. IEEE Access, 2021, 9, 11974-12001.	4.2	141
6	Remarks and Prospects on Explainable Fuzzy Systems. Studies in Computational Intelligence, 2021, , 219-225.	0.9	2
7	Designing Interpretable Fuzzy Systems. Studies in Computational Intelligence, 2021, , 119-168.	0.9	6
8	Revisiting Indexes for Assessing Interpretability of Fuzzy Systems. Studies in Computational Intelligence, 2021, , 91-118.	0.9	7
9	Factual and Counterfactual Explanation of Fuzzy Information Granules. Studies in Computational Intelligence, 2021, , 153-185.	0.9	6
10	Toward Explainable Artificial Intelligence Through Fuzzy Systems. Studies in Computational Intelligence, 2021, , 1-23.	0.9	7
11	A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease. Scientific Reports, 2021, 11, 2660.	3.3	125
12	Modelling of the adsorption of urea herbicides by tropical soils with an Adaptiveâ€Neuralâ€based Fuzzy Inference System. Journal of Chemometrics, 2021, 35, e3335.	1.3	3
13	Robust hybrid deep learning models for Alzheimer's progression detection. Knowledge-Based Systems, 2021, 213, 106688.	7.1	65
14	A Framework for Analyzing Fairness, Accountability, Transparency and Ethics: A Use-case in Banking Services. , 2021, , .		5
15	Interactive Natural Language Technology for Explainable Artificial Intelligence. Lecture Notes in Computer Science, 2021, , 63-70.	1.3	4
16	An Overview of Fuzzy Systems. Studies in Computational Intelligence, 2021, , 25-47.	0.9	9
17	Interpretability Constraints and Criteria for Fuzzy Systems. Studies in Computational Intelligence, 2021, , 49-89.	0.9	10
18	Generation and evaluation of factual and counterfactual explanations for decision trees and fuzzy rule-based classifiers. , 2020, , .		17

#	Article	IF	CITATIONS
19	Building Explanations for Fuzzy Decision Trees with the ExpliClas Software. , 2020, , .		11
20	Experimental Study on Generating Multi-modal Explanations of Black-box Classifiers in terms of Gray-box Classifiers. , 2020, , .		5
21	Teaching Explainable Artificial Intelligence to High School Students. International Journal of Computational Intelligence Systems, 2020, 13, 974.	2.7	36
22	From Zadeh's Computing with Words Towards eXplainable Artificial Intelligence. Lecture Notes in Computer Science, 2019, , 244-248.	1.3	6
23	Paving the Way to Explainable Artificial Intelligence with Fuzzy Modeling. Lecture Notes in Computer Science, 2019, , 215-227.	1.3	15
24	Py4JFML: A Python wrapper for using the IEEE Std 1855-2016 through JFML. , 2019, , .		11
25	ExpliClas: Automatic Generation of Explanations in Natural Language for Weka Classifiers. , 2019, , .		30
26	Explainable Artificial Intelligence for Human-Centric Data Analysis in Virtual Learning Environments. Communications in Computer and Information Science, 2019, , 125-138.	0.5	29
27	Paving the way towards counterfactual generation in argumentative conversational agents. , 2019, , .		3
28	Toward automatic generation of linguistic advice for saving energy at home. Soft Computing, 2018, 22, 345-359.	3.6	33
29	JFML: A Java Library to Design Fuzzy Logic Systems According to the IEEE Std 1855-2016. IEEE Access, 2018, 6, 54952-54964.	4.2	45
30	An Ontology-Based Interpretable Fuzzy Decision Support System for Diabetes Diagnosis. IEEE Access, 2018, 6, 37371-37394.	4.2	58
31	A Bibliometric Analysis of the Explainable Artificial Intelligence Research Field. Communications in Computer and Information Science, 2018, , 3-15.	0.5	38
32	Using Fuzzy Sets in a Data-to-Text System for Business Service Intelligence. Advances in Intelligent Systems and Computing, 2018, , 220-231.	0.6	2
33	New types of computational perceptions: Linguistic descriptions in deforestation analysis. Expert Systems With Applications, 2017, 85, 46-60.	7.6	13
34	Fuzzy classifier ensembles for hierarchical WiFi-based semantic indoor localization. Expert Systems With Applications, 2017, 90, 394-404.	7.6	22
35	Natural Language Generation with Computational Intelligence [Guest Editorial]. IEEE Computational Intelligence Magazine, 2017, 12, 8-9.	3.2	7
36	Generating automatic linguistic descriptions with big data. Information Sciences, 2017, 380, 12-30.	6.9	14

#	Article	IF	CITATIONS
37	An exploratory study on the benefits of using natural language for explaining fuzzy rule-based systems. , 2017, , .		17
38	Looking for a real-world-semantics-based approach to the interpretability of fuzzy systems. , 2017, , .		1
39	An empirical approach for modeling fuzzy geographical descriptors. , 2017, , .		4
40	Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort. Sensors, 2017, 17, 147.	3.8	68
41	rLDCP: R package for text generation from data. , 2017, , .		4
42	Descriptive and Comparative Analysis of Human Perceptions expressed through Fuzzy Rating Scale-based Questionnaires. International Journal of Computational Intelligence Systems, 2016, 9, 450.	2.7	16
43	Introduction to the Soft Computing and Intelligent Data Analysis Minitrack. , 2016, , .		Ο
44	Special Issue on Computational Intelligence Software Guest Editorial. IEEE Computational Intelligence Magazine, 2016, 11, 13-14.	3.2	1
45	Enhancing Fingrams to deal with precise fuzzy systems. Fuzzy Sets and Systems, 2016, 297, 1-25.	2.7	10
46	A Survey of Fuzzy Systems Software: Taxonomy, Current Research Trends, and Prospects. IEEE Transactions on Fuzzy Systems, 2016, 24, 40-56.	9.8	91
47	Interpretability of Fuzzy Systems: Current Research Trends and Prospects. , 2015, , 219-237.		71
48	Introduction to the soft computing and intelligent data analysis minitrack. , 2015, , .		0
49	Applying Random Linear Oracles with Fuzzy Classifier Ensembles on WiFi Indoor Localization Problem. Studies in Fuzziness and Soft Computing, 2015, , 277-287.	0.8	1
50	WiFi-based indoor localization and tracking of a moving device. , 2014, , .		12
51	Analyzing fuzzy association rules with Fingrams in KEEL. , 2014, , .		7
52	Customization of Products Assisted by Kansei Engineering, Sensory Analysis and Soft Computing. Communications in Computer and Information Science, 2014, , 616-625.	0.5	2
53	A multiclassifier approach for topology-based WiFi indoor localization. Soft Computing, 2013, 17, 1817-1831.	3.6	25
54	FINGRAMS: Visual Representations of Fuzzy Rule-Based Inference for Expert Analysis of Comprehensibility. IEEE Transactions on Fuzzy Systems, 2013, 21, 1133-1149.	9.8	47

#	Article	IF	CITATIONS
55	Human activity recognition in indoor environments by means of fusing information extracted from intensity of WiFi signal and accelerations. Information Sciences, 2013, 233, 162-182.	6.9	35
56	A new fingram-based software tool for visual representation and analysis of fuzzy association rules. , 2013, , .		9
57	Special Issue on Software Tools for Soft Computing. International Journal of Computational Intelligence Systems, 2013, 6, 1.	2.7	9
58	Quest for Interpretability-Accuracy Trade-off Supported by Fingrams into the Fuzzy Modeling Tool GUAJE. International Journal of Computational Intelligence Systems, 2013, 6, 46.	2.7	32
59	Social Network Analysis of Co-fired Fuzzy Rules. Studies in Fuzziness and Soft Computing, 2013, , 113-128.	0.8	9
60	Modeling Interpretable Fuzzy Rule-Based Classifiers for Medical Decision Support. , 2013, , 1064-1081.		8
61	Interpretability analysis of fuzzy association rules supported by fingrams. , 2013, , .		6
62	Interpretable fuzzy system allowing to be framed in a profile photo through linguistic expressions. , 2013, , .		3
63	Wifigrams: Design of Hierarchical Wi-Fi Indoor Localization Systems Guided by Social Network Analysis. Lecture Notes in Computer Science, 2013, , 9-16.	1.3	0
64	Impact of Signal Representations on the Performance of Hierarchical WiFi Localization Systems. Lecture Notes in Computer Science, 2013, , 17-24.	1.3	1
65	Enhancing the fuzzy modeling tool GUAJE with a new module for fingrams-based analysis of fuzzy rule bases. , 2012, , .		6
66	Modeling Interpretable Fuzzy Rule-Based Classifiers for Medical Decision Support. Advances in Medical Technologies and Clinical Practice Book Series, 2012, , 255-272.	0.3	5
67	Multi-objective design of highly interpretable fuzzy rule-based classifiers with semantic cointension. , 2011, , .		14
68	Generating Understandable and Accurate Fuzzy Rule-Based Systems in a Java Environment. Lecture Notes in Computer Science, 2011, , 212-219.	1.3	38
69	Enhanced WiFi localization system based on Soft Computing techniques to deal with small-scale variations in wireless sensors. Applied Soft Computing Journal, 2011, 11, 4677-4691.	7.2	26
70	HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers. Soft Computing, 2011, 15, 1959-1980.	3.6	73
71	Topology-based indoor localization by means of WiFi fingerprinting with a computational intelligent classifier. , 2011, , .		4
72	Human activity recognition applying computational intelligence techniques for fusing information related to WiFi positioning and body posture. , 2010, , .		17

#	Article	IF	CITATIONS
73	Combining user's preferences and quality criteria into a new index for guiding the design of fuzzy systems with a good interpretability-accuracy trade-off. , 2010, , .		7
74	Embedding HILK in a three-objective evolutionary algorithm with the aim of modeling highly interpretable fuzzy rule-based classifiers. , 2010, , .		21
75	Looking for a good fuzzy system interpretability index: An experimental approach. International Journal of Approximate Reasoning, 2009, 51, 115-134.	3.3	130
76	An Interpretability-Guided Modeling Process for Learning Comprehensible Fuzzy Rule-Based Classifiers. , 2009, , .		4
77	WiFi localization system based on Fuzzy Logic to deal with signal variations. , 2009, , .		3
78	Mealtime Blood Glucose Classifier Based on Fuzzy Logic for the DIABTel Telemedicine System. Lecture Notes in Computer Science, 2009, , 295-304.	1.3	4
79	WiFi Localization System Using Fuzzy Rule-Based Classification. Lecture Notes in Computer Science, 2009, , 383-390.	1.3	8
80	HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism. International Journal of Intelligent Systems, 2008, 23, 761-794.	5.7	87
81	Highly Interpretable Linguistic Knowledge Bases Optimization: Genetic Tuning versus Solis-Wetts. Looking for a good interpretability-accuracy trade-off. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	11
82	Knowledge-based Intelligent Diagnosis of Ground Robot Collision with Non Detectable Obstacles. Journal of Intelligent and Robotic Systems: Theory and Applications, 2007, 48, 539-566.	3.4	17
83	KBCT: a knowledge extraction and representation tool for fuzzy logic based systems. , 0, , .		13
84	Automatic linguistic reporting of customer activity patterns in open malls. Multimedia Tools and Applications, 0, , 1.	3.9	3
85	Explainable Artificial Intelligence for Kids. , 0, , .		3
86	Understanding the Inference Mechanism of FURIA by means of Fingrams. , 0, , .		0
87	QUALE $\hat{A}^{\textcircled{B}}$: A new Toolbox for Quantitative and Qualitative Analysis of Human Perceptions. , 0, , .		1
88	Linguistic Aggregation Functions using the MapReduce Paradigm. , 0, , .		0
89	Fuzzy-Based Language Grounding of Geographical References: From Writers to Readers. International Journal of Computational Intelligence Systems, 0, , .	2.7	0