Lin Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4195888/publications.pdf Version: 2024-02-01

LINLINC

#	Article	IF	CITATIONS
1	Spongeâ€Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance. Advanced Functional Materials, 2014, 24, 3917-3925.	14.9	239
2	Effective Prevention of Charge Trapping in Graphitic Carbon Nitride with Nanosized Red Phosphorus Modification for Superior Photo(electro)catalysis. Advanced Functional Materials, 2017, 27, 1703484.	14.9	188
3	Cu ₂ O Decorated with Cocatalyst MoS ₂ for Solar Hydrogen Production with Enhanced Efficiency under Visible Light. Journal of Physical Chemistry C, 2014, 118, 14238-14245.	3.1	138
4	Electrospun Polyacrylonitrile–Ionic Liquid Nanofibers for Superior PM _{2.5} Capture Capacity. ACS Applied Materials & Interfaces, 2016, 8, 7030-7036.	8.0	92
5	Ternary polyaniline–graphene–TiO ₂ hybrid with enhanced activity for visible-light photo-electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 1068-1075.	10.3	68
6	Unveiling Carrier Dynamics in Periodic Porous BiVO ₄ Photocatalyst for Enhanced Solar Water Splitting. ACS Energy Letters, 2021, 6, 3400-3407.	17.4	68
7	Electronically Engineering Water Resistance in Methane Combustion with an Atomically Dispersed Tungsten on PdO Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
8	Graphitic carbon nitride nanosheet wrapped mesoporous titanium dioxide for enhanced photoelectrocatalytic water splitting. Catalysis Today, 2018, 315, 103-109.	4.4	53
9	Photothermal Synergistic Effect of Pt ₁ /CuO-CeO ₂ Single-Atom Catalysts Significantly Improving Toluene Removal. Environmental Science & Technology, 2022, 56, 8722-8732.	10.0	52
10	Beanpod-shaped Fe–C–N composite as promising ORR catalyst for fuel cells operated in neutral media. Journal of Materials Chemistry A, 2014, 2, 2623.	10.3	49
11	Phosphorus vapor assisted preparation of P-doped ultrathin hollow g-C3N4 sphere for efficient solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2021, 297, 120438.	20.2	47
12	Elemental red phosphorus-based photocatalysts for environmental remediation: A review. Chemosphere, 2021, 274, 129793.	8.2	34
13	Polyurethane sponge facilitating highly dispersed TiO2 nanoparticles on reduced graphene oxide sheets for enhanced photoelectro-oxidation of ethanol. Journal of Materials Chemistry A, 2015, 3, 15675-15682.	10.3	33
14	High Selectivity to HCl for the Catalytic Removal of 1,2-Dichloroethane Over RuP/3DOM WO _{<i>x</i>} : Insights into the Effects of P-Doping and H ₂ O Introduction. Environmental Science & Technology, 2021, 55, 14906-14916.	10.0	33
15	In situ construction of elemental phosphorus nanorod-modified TiO2 photocatalysts for efficient visible-light-driven H2 generation. Applied Catalysis B: Environmental, 2021, 297, 120412.	20.2	30
16	3DOM CeO ₂ -supported Ru _y M (M = Au, Pd, Pt) alloy nanoparticles with improved catalytic activity and chlorine-tolerance in trichloroethylene oxidation. Catalysis Science and Technology, 2020, 10, 3755-3770.	4.1	25
17	Nanotubular OMS-2 Supported Single-Atom Platinum Catalysts Highly Active for Benzene Oxidation. Journal of Physical Chemistry C, 2021, 125, 17696-17708.	3.1	22
18	Phosphorus-containing g-C3N4 photocatalysts for hydrogen evolution: A review. International Journal of Hydrogen Energy, 2022, 47, 42136-42149.	7.1	17

Lin Jing

#	Article	IF	CITATIONS
19	Engineering Platinum Catalysts <i>via</i> a Site-Isolation Strategy with Enhanced Chlorine Resistance for the Elimination of Multicomponent VOCs. Environmental Science & Technology, 2022, 56, 9672-9682.	10.0	17
20	Hetero-phase dendritic elemental phosphorus for visible light photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 312, 121428.	20.2	15
21	Visible-light photocatalysis and charge carrier dynamics of elemental crystalline red phosphorus. Journal of Chemical Physics, 2020, 153, 024707.	3.0	13
22	Toluene Oxidation over the M–Al (M = Ce, La, Co, Ce–La, and Ce–Co) Catalysts Derived from the Modified "One-Pot―Evaporation-Induced Self-Assembly Method: Effects of Microwave or Ultrasound Irradiation and Noble-Metal Loading on Catalytic Activity and Stability. Industrial & Engineering Chemistry Research, 2020, 59, 5624-5635.	3.7	10
23	Ru Nanoparticles Supported on Oxygenâ€Deficient 3DOM BiVO 4 : Highâ€Performance Catalysts for the Visibleâ€Lightâ€Driven Selective Oxidation of Benzyl Alcohol. ChemCatChem, 2019, 11, 6398-6407.	3.7	9
24	Electronically Engineering Water Resistance in Methane Combustion with an Atomically Dispersed Tungsten on PdO Catalyst. Angewandte Chemie, 2022, 134, .	2.0	9
25	Response to Comment on <i>Spongeâ€Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance</i> . Advanced Functional Materials, 2015, 25, 182-183.	14.9	8
26	Pd/silicalite-1: An highly active catalyst for the oxidative removal of toluene. Journal of Environmental Sciences, 2022, 116, 209-219.	6.1	7
27	Mesoporous Na _{<i>x</i>} MnO _{<i>y</i>} -Supported Platinum–Cobalt Bimetallic Single-Atom Catalysts with Good Sulfur Dioxide Tolerance in Propane Oxidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 8326-8341.	6.7	7
28	Rational design of CuO@Cu nanostructure with tuneable morphology and electrochemical properties. RSC Advances, 2014, 4, 8121.	3.6	4
29	Water Treatment: Spongeâ€Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance (Adv. Funct. Mater. 25/2014). Advanced Functional Materials, 2014, 24, 3838-3838.	14.9	3
30	Enhanced Performance of Supported Ternary Metal Catalysts for the Oxidation of Toluene in the Presence of Trichloroethylene. Catalysts, 2022, 12, 541.	3.5	2
31	Photocatalysis: Effective Prevention of Charge Trapping in Graphitic Carbon Nitride with Nanosized Red Phosphorus Modification for Superior Photo(electro)catalysis (Adv. Funct. Mater. 46/2017). Advanced Functional Materials, 2017, 27, .	14.9	1