
Eleonore Welcomme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4195523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation of plutonium(<scp>iv</scp>) silicate species in very alkaline reactive media. Dalton Transactions, 2021, 50, 12528-12536.	3.3	5
2	<i>In situ</i> study of the synthesis of thorite (ThSiO ₄) under environmental representative conditions. Dalton Transactions, 2020, 49, 11512-11521.	3.3	7
3	Oxidation as an Early Stage in the Multistep Thermal Decomposition of Uranium(IV) Oxalate into U3O8. Inorganic Chemistry, 2020, 59, 8589-8602.	4.0	14
4	Soft Hydrothermal Synthesis of Hafnon, HfSiO ₄ . Crystal Growth and Design, 2020, 20, 1820-1828.	3.0	11
5	The formation of PuSiO ₄ under hydrothermal conditions. Dalton Transactions, 2020, 49, 6434-6445.	3.3	11
6	Conversion of actinide nitrate surrogates into oxide using combustion synthesis process: A facile approach. Journal of Nuclear Materials, 2019, 525, 14-21.	2.7	2
7	Formation of CeSiO ₄ from cerium(<scp>iii</scp>) silicate precursors. Dalton Transactions, 2019, 48, 10455-10463.	3.3	13
8	Preparation of CeSiO ₄ from aqueous precursors under soft hydrothermal conditions. Dalton Transactions, 2019, 48, 7551-7559.	3.3	14
9	Actinide mixed oxide conversion by advanced thermal denitration route. Journal of Nuclear Materials, 2019, 519, 157-165.	2.7	7
10	Impact of Carbonate Ions on the Synthesis of ThSiO ₄ under Hydrothermal Conditions. Inorganic Chemistry, 2018, 57, 12398-12408.	4.0	11
11	Multiparametric Study of the Synthesis of ThSiO ₄ under Hydrothermal Conditions. Inorganic Chemistry, 2018, 57, 9393-9402.	4.0	19
12	Hard X-ray diffraction scanning tomography with sub-micrometre spatial resolution: application to an annealed γ-U _{0.85} Mo _{0.15} particle. Journal of Applied Crystallography, 2011, 44, 1111-1119.	4.5	26
13	U–Mo/Al–Si interaction: Influence of Si concentration. Journal of Nuclear Materials, 2010, 399, 189-199.	2.7	30
14	Hard X-ray diffraction scanning tomography with sub-micrometer spatial resolution. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s100-s100.	0.3	0
15	Probing the structure of heterogeneous diluted materials by diffraction tomography. Nature Materials, 2008, 7, 468-472.	27.5	200
16	Probing the structure of heterogeneous diluted materials by diffraction tomography. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C54-C54.	0.3	0
17	Imaging and structural analysis of heterogeneous diluted materials by diffraction tomography. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C183-C183.	0.3	0
18	Synchrotron-Based X-ray Spectromicroscopy Used for the Study of an Atypical Micrometric Pigment in 16th Century Paintings. Analytical Chemistry, 2007, 79, 6988-6994.	6.5	56

#	Article	IF	CITATIONS
19	Classification of lead white pigments using synchrotron radiation micro X-ray diffraction. Applied Physics A: Materials Science and Processing, 2007, 89, 825-832.	2.3	75
20	Selective 3D imaging of diamond/C60 growth's pellet by X-ray micro-diffraction computed-tomography. Acta Crystallographica Section A: Foundations and Advances, 2007, 63, s71-s71.	0.3	0
21	Early Use of PbS Nanotechnology for an Ancient Hair Dyeing Formula. Nano Letters, 2006, 6, 2215-2219.	9.1	141
22	Investigation of white pigments used as make-up during the Greco-Roman period. Applied Physics A: Materials Science and Processing, 2006, 83, 551-556.	2.3	47