Ype Elgersma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4195244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Automated Approach for Improving Standardization of the Marble Burying Test Enables Quantification of Burying Bouts and Activity Characteristics. ENeuro, 2022, 9, ENEURO.0446-21.2022.	0.9	4
2	A cross-species spatiotemporal proteomic analysis identifies UBE3A-dependent signaling pathways and targets. Molecular Psychiatry, 2022, 27, 2590-2601.	4.1	3
3	Unlike dietary restriction, rapamycin fails to extend lifespan and reduce transcription stress in progeroid DNA repairâ€deficient mice. Aging Cell, 2021, 20, e13302.	3.0	27
4	UBE3A reinstatement as a diseaseâ€modifying therapy for Angelman syndrome. Developmental Medicine and Child Neurology, 2021, 63, 802-807.	1.1	27
5	Loss of nuclear UBE3A activity is the predominant cause of Angelman syndrome in individuals carrying UBE3A missense mutations. Human Molecular Genetics, 2021, 30, 430-442.	1.4	15
6	Mono-ubiquitination of Rabphilin 3A by UBE3A serves a non-degradative function. Scientific Reports, 2021, 11, 3007.	1.6	5
7	TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development. Human Mutation, 2021, 42, 445-459.	1.1	26
8	RHEB/mTOR hyperactivity causes cortical malformations and epileptic seizures through increased axonal connectivity. PLoS Biology, 2021, 19, e3001279.	2.6	27
9	Assessing the requirements of prenatal UBE3A expression for rescue of behavioral phenotypes in a mouse model for Angelman syndrome. Molecular Autism, 2020, 11, 70.	2.6	21
10	Examination of the genetic factors underlying the cognitive variability associated with neurofibromatosis type 1. Genetics in Medicine, 2020, 22, 889-897.	1.1	21
11	Considerations for Clinical Therapeutic Development of Statins for Neurodevelopmental Disorders. ENeuro, 2020, 7, ENEURO.0392-19.2020.	0.9	3
12	Effects of antiepileptic drugs in a new TSC/mTORâ€dependent epilepsy mouse model. Annals of Clinical and Translational Neurology, 2019, 6, 1273-1291.	1.7	41
13	A randomized controlled trial with everolimus for IQ and autism in tuberous sclerosis complex. Neurology, 2019, 93, e200-e209.	1.5	78
14	Delayed loss of UBE3A reduces the expression of Angelman syndrome-associated phenotypes. Molecular Autism, 2019, 10, 23.	2.6	42
15	Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome. Nature Neuroscience, 2019, 22, 1235-1247.	7.1	65
16	CAMK2-Dependent Signaling in Neurons Is Essential for Survival. Journal of Neuroscience, 2019, 39, 5424-5439.	1.7	55
17	Candidate CSPG4 mutations and induced pluripotent stem cell modeling implicate oligodendrocyte progenitor cell dysfunction in familial schizophrenia. Molecular Psychiatry, 2019, 24, 757-771.	4.1	51

18 Cover Image, Volume 39, Issue 12. Human Mutation, 2018, 39, i-i.

1.1 0

#	Article	IF	CITATIONS
19	A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants. Molecular Autism, 2018, 9, 47.	2.6	76
20	The intellectual disability-associated CAMK2G p.Arg292Pro mutation acts as a pathogenic gain-of-function. Human Mutation, 2018, 39, 2008-2024.	1.1	25
21	Adult <i>Ube3a</i> Gene Reinstatement Restores the Electrophysiological Deficits of Prefrontal Cortex Layer 5 Neurons in a Mouse Model of Angelman Syndrome. Journal of Neuroscience, 2018, 38, 8011-8030.	1.7	61
22	<i>Ube3a</i> loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice. Journal of Neurophysiology, 2017, 118, 634-646.	0.9	27
23	De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. American Journal of Human Genetics, 2017, 101, 768-788.	2.6	136
24	Variation in a range of mTOR-related genes associates with intracranial volume and intellectual disability. Nature Communications, 2017, 8, 1052.	5.8	63
25	Mechanisms underlying cognitive deficits in a mouse model for Costello Syndrome are distinct from other RASopathy mouse models. Scientific Reports, 2017, 7, 1256.	1.6	26
26	Interdependence of clinical factors predicting cognition in children with tuberous sclerosis complex. Journal of Neurology, 2017, 264, 161-167.	1.8	15
27	A brain proteomic investigation of rapamycin effects in the Tsc1 +/â^' mouse model. Molecular Autism, 2017, 8, 41.	2.6	19
28	Impaired Neurite Contact Guidance in Ubiquitin Ligase E3a (Ube3a)â€Deficient Hippocampal Neurons on Nanostructured Substrates. Advanced Healthcare Materials, 2016, 5, 850-862.	3.9	17
29	GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility. Neuron, 2016, 90, 56-69.	3.8	127
30	Sirolimus for epilepsy in children with tuberous sclerosis complex. Neurology, 2016, 87, 1011-1018.	1.5	73
31	Calcium threshold shift enables frequency-independent control of plasticity by an instructive signal. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13221-13226.	3.3	40
32	The molecular, temporal and region-specific requirements of the beta isoform of Calcium/Calmodulin-dependent protein kinase type 2 (CAMK2B) in mouse locomotion. Scientific Reports, 2016, 6, 26989.	1.6	24
33	Behavioral and cognitive outcomes for clinical trials in children with neurofibromatosis type 1. Neurology, 2016, 86, 154-160.	1.5	26
34	An essential role for UBE2A/HR6A in learning and memory and mGLUR-dependent long-term depression. Human Molecular Genetics, 2016, 25, 1-8.	1.4	30
35	Arc expression identifies the lateral amygdala fear memory trace. Molecular Psychiatry, 2016, 21, 364-375.	4.1	72
36	PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex. Scientific Reports, 2015, 5, 14534.	1.6	40

#	Article	IF	CITATIONS
37	In vivo synaptic transmission and morphology in mouse models of Tuberous sclerosis, Fragile X syndrome, Neurofibromatosis type 1, and Costello syndrome. Frontiers in Cellular Neuroscience, 2015, 9, 234.	1.8	24
38	Intact neuronal function in Rheb1 mutant mice: implications for TORC1-based treatments. Human Molecular Genetics, 2015, 24, 3390-3398.	1.4	22
39	The light spot test: Measuring anxiety in mice in an automated home-cage environment. Behavioural Brain Research, 2015, 294, 123-130.	1.2	35
40	Treatment of Cognitive Deficits in Genetic Disorders. JAMA Neurology, 2015, 72, 1052.	4.5	13
41	HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Molecular Psychiatry, 2015, 20, 1311-1321.	4.1	66
42	A molecular tightrope. Nature, 2015, 526, 50-51.	13.7	9
43	Neurofibromin regulates HCN activity in Parvalbumin-positive interneurons. Molecular Psychiatry, 2015, 20, 1263-1263.	4.1	4
44	Within-strain variation in behavior differs consistently between common inbred strains of mice. Mammalian Genome, 2015, 26, 348-354.	1.0	38
45	Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. Journal of Clinical Investigation, 2015, 125, 2069-2076.	3.9	186
46	Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model. Journal of Clinical Investigation, 2015, 125, 4305-4315.	3.9	40
47	Distinct roles of α- and βCaMKII in controlling long-term potentiation of GABAA-receptor mediated transmission in murine Purkinje cells. Frontiers in Cellular Neuroscience, 2014, 8, 16.	1.8	13
48	Sheltering Behavior and Locomotor Activity in 11 Genetically Diverse Common Inbred Mouse Strains Using Home-Cage Monitoring. PLoS ONE, 2014, 9, e108563.	1.1	76
49	Treatment of intractable epilepsy in tuberous sclerosis complex with everolimus is not yet evidenceâ€based. Annals of Neurology, 2014, 75, 163-164.	2.8	5
50	Neuregulin-3 in the Mouse Medial Prefrontal Cortex Regulates Impulsive Action. Biological Psychiatry, 2014, 76, 648-655.	0.7	55
51	Conditional Deletion of α-CaMKII Impairs Integration of Adult-Generated Granule Cells into Dentate Gyrus Circuits and Hippocampus-Dependent Learning. Journal of Neuroscience, 2014, 34, 11919-11928.	1.7	35
52	Interaction of SH‣Y5Y Cells with Nanogratings During Neuronal Differentiation: Comparison with Primary Neurons. Advanced Healthcare Materials, 2014, 3, 581-587.	3.9	46
53	Temporal and Region-Specific Requirements of αCaMKII in Spatial and Contextual Learning. Journal of Neuroscience, 2014, 34, 11180-11187.	1.7	39
54	Synaptic Transmission and Plasticity at Inputs to Murine Cerebellar Purkinje Cells Are Largely Dispensable for Standard Nonmotor Tasks. Journal of Neuroscience, 2013, 33, 12599-12618.	1.7	42

#	Article	IF	CITATIONS
55	Simvastatin for cognitive deficits and behavioural problems in patients with neurofibromatosis type 1 (NF1-SIMCODA): a randomised, placebo-controlled trial. Lancet Neurology, The, 2013, 12, 1076-1083.	4.9	113
56	Rheb Regulates Mitophagy Induced by Mitochondrial Energetic Status. Cell Metabolism, 2013, 17, 719-730.	7.2	222
57	TORC1â€dependent epilepsy caused by acute biallelic <i>Tsc1</i> deletion in adult mice. Annals of Neurology, 2013, 74, 569-579.	2.8	68
58	CaMKIIÂ Regulates Oligodendrocyte Maturation and CNS Myelination. Journal of Neuroscience, 2013, 33, 10453-10458.	1.7	50
59	Mammalian Target of Rapamycin Complex I (mTORC1) Activity in Ras Homologue Enriched in Brain (Rheb)-Deficient Mouse Embryonic Fibroblasts. PLoS ONE, 2013, 8, e81649.	1.1	15
60	Treatment of Neurodevelopmental Disorders in Adulthood. Journal of Neuroscience, 2012, 32, 14074-14079.	1.7	57
61	Ca2+/Calmodulin-dependent Protein Kinase IIα (αCaMKII) Controls the Activity of the Dopamine Transporter. Journal of Biological Chemistry, 2012, 287, 29627-29635.	1.6	53
62	A novel <scp>QTL</scp> underlying earlyâ€onset, lowâ€frequency hearing loss in <scp>BXD</scp> recombinant inbred strains. Genes, Brain and Behavior, 2012, 11, 911-920.	1.1	12
63	α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns. PLoS ONE, 2012, 7, e31649.	1.1	7
64	Marked Reduction of AKT1 Expression and Deregulation of AKT1-Associated Pathways in Peripheral Blood Mononuclear Cells of Schizophrenia Patients. PLoS ONE, 2012, 7, e32618.	1.1	52
65	The Learning Disabilities Network (LeaDNet): Using neurofibromatosis type 1 (NF1) as a paradigm for translational research. American Journal of Medical Genetics, Part A, 2012, 158A, 2225-2232.	0.7	29
66	Independent genetic loci for sensorimotor gating and attentional performance in BXD recombinant inbred strains. Genes, Brain and Behavior, 2012, 11, 147-156.	1.1	19
67	Functional Gene-Expression Analysis Shows Involvement of Schizophrenia-Relevant Pathways in Patients with 22q11 Deletion Syndrome. PLoS ONE, 2012, 7, e33473.	1.1	27
68	Towards mouse models of perseveration: A heritable component in extinction of operant behavior in fourteen standard and recombinant inbred mouse lines. Neurobiology of Learning and Memory, 2011, 96, 280-287.	1.0	10
69	Motor deficits in neurofibromatosis type 1 mice: the role of the cerebellum. Genes, Brain and Behavior, 2011, 10, 404-409.	1.1	30
70	Motor Learning in Children with Neurofibromatosis Type I. Cerebellum, 2011, 10, 14-21.	1.4	31
71	Accelerated Age-Related Cognitive Decline and Neurodegeneration, Caused by Deficient DNA Repair. Journal of Neuroscience, 2011, 31, 12543-12553.	1.7	110
72	Rheb: Enrichment beyond the brain. Cell Cycle, 2011, 10, 2412-2413.	1.3	0

#	Article	IF	CITATIONS
73	ÂCaMKII Plays a Nonenzymatic Role in Hippocampal Synaptic Plasticity and Learning by Targeting ÂCaMKII to Synapses. Journal of Neuroscience, 2011, 31, 10141-10148.	1.7	105
74	Rheb Is Essential for Murine Development. Molecular and Cellular Biology, 2011, 31, 1672-1678.	1.1	68
75	Interval Timing Is Intact in Arrhythmic <i>Cry1/Cry2</i> -Deficient Mice. Journal of Biological Rhythms, 2011, 26, 305-313.	1.4	16
76	Novel Candidate Genes Associated with Hippocampal Oscillations. PLoS ONE, 2011, 6, e26586.	1.1	10
77	Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathologica, 2010, 120, 461-475.	3.9	86
78	Appetitive operant conditioning in mice: heritability and dissociability of training stages. Frontiers in Behavioral Neuroscience, 2010, 4, 171.	1.0	16
79	Intrinsic Plasticity Complements Long-Term Potentiation in Parallel Fiber Input Gain Control in Cerebellar Purkinje Cells. Journal of Neuroscience, 2010, 30, 13630-13643.	1.7	139
80	Purkinje Cell-Specific Knockout of the Protein Phosphatase PP2B Impairs Potentiation and Cerebellar Motor Learning. Neuron, 2010, 67, 618-628.	3.8	231
81	Health-Related Quality of Life in Children with Neurofibromatosis Type 1: Contribution of Demographic Factors, Disease-Related Factors, and Behavior. Journal of Pediatrics, 2009, 154, 420-425.e1.	0.9	70
82	βCaMKII controls the direction of plasticity at parallel fiber–Purkinje cell synapses. Nature Neuroscience, 2009, 12, 823-825.	7.1	116
83	Activity and impulsive action are controlled by different genetic and environmental factors. Genes, Brain and Behavior, 2009, 8, 817-828.	1.1	54
84	Genetic control of experienceâ€dependent plasticity in the visual cortex. Genes, Brain and Behavior, 2008, 7, 915-923.	1.1	35
85	Rapid changes in hippocampal CA1 pyramidal cell function via pre―as well as postsynaptic membrane mineralocorticoid receptors. European Journal of Neuroscience, 2008, 27, 2542-2550.	1.2	163
86	Oncogenes on my mind: ERK and MTOR signaling in cognitive diseases. Trends in Genetics, 2008, 24, 498-510.	2.9	70
87	α-Isoform of calcium-calmodulin-dependent protein kinase II and postsynaptic density protein 95 differentially regulate synaptic expression of NR2A– and NR2B–containing N-methyl-d-aspartate receptors in hippocampus. Neuroscience, 2008, 151, 43-55.	1.1	38
88	Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning. Cell, 2008, 135, 549-560.	13.5	384
89	<i>Spred1</i> Is Required for Synaptic Plasticity and Hippocampus-Dependent Learning. Journal of Neuroscience, 2008, 28, 14443-14449.	1.7	90
90	Impact of Neurofibromatosis Type 1 on School Performance. Journal of Child Neurology, 2008, 23, 1002-1010.	0.7	122

#	Article	IF	CITATIONS
91	Quantitative Differentiation Between Healthy and Disordered Brain Matter in Patients with Neurofibromatosis Type I Using Diffusion Tensor Imaging. American Journal of Neuroradiology, 2008, 29, 816-822.	1.2	57
92	Effect of Simvastatin on Cognitive Functioning in Children With Neurofibromatosis Type 1. JAMA - Journal of the American Medical Association, 2008, 300, 287.	3.8	175
93	Genetic engineering cures mice of neurological deficits: prospects for treating Angelman syndrome. Pharmacogenomics, 2007, 8, 539-541.	0.6	7
94	Cognitive deficits in <i>Tsc1</i> ^{+/â^²} mice in the absence of cerebral lesions and seizures. Annals of Neurology, 2007, 62, 648-655.	2.8	233
95	Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nature Neuroscience, 2007, 10, 280-282.	7.1	260
96	Kinase activity is not required for αCaMKII-dependent presynaptic plasticity at CA3-CA1 synapses. Nature Neuroscience, 2007, 10, 1125-1127.	7.1	49
97	αCaMKII Is Essential for Cerebellar LTD and Motor Learning. Neuron, 2006, 51, 835-843.	3.8	203
98	Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit?. Nature Neuroscience, 2005, 8, 1292-1294.	7.1	86
99	Hippocampal Synaptic Metaplasticity Requires Inhibitory Autophosphorylation of Ca2+/Calmodulin-Dependent Kinase II. Journal of Neuroscience, 2005, 25, 7697-7707.	1.7	55
100	Modulation of Presynaptic Plasticity and Learning by the H-ras/Extracellular Signal-Regulated Kinase/Synapsin I Signaling Pathway. Journal of Neuroscience, 2005, 25, 9721-9734.	1.7	170
101	Mouse Genetic Approaches to Investigating Calcium/Calmodulin-Dependent Protein Kinase II Function in Plasticity and Cognition. Journal of Neuroscience, 2004, 24, 8410-8415.	1.7	133
102	Cerebellar LTD and Learning-Dependent Timing of Conditioned Eyelid Responses. Science, 2003, 301, 1736-1739.	6.0	247
103	Derangements of Hippocampal Calcium/Calmodulin-Dependent Protein Kinase II in a Mouse Model for Angelman Mental Retardation Syndrome. Journal of Neuroscience, 2003, 23, 2634-2644.	1.7	240
104	Inhibitory Autophosphorylation of CaMKII Controls PSD Association, Plasticity, and Learning. Neuron, 2002, 36, 493-505.	3.8	273
105	Analysis of Cx36 Knockout Does Not Support Tenet That Olivary Gap Junctions Are Required for Complex Spike Synchronization and Normal Motor Performance. Annals of the New York Academy of Sciences, 2002, 978, 391-404.	1.8	62
106	Molecular and cellular mechanisms of cognitive function: implications for psychiatric disorders. Biological Psychiatry, 2000, 47, 200-209.	0.7	25
107	Molecular mechanisms of synaptic plasticity and memory. Current Opinion in Neurobiology, 1999, 9, 209-213.	2.0	113
108	A Mobile PTS2 Receptor for Peroxisomal Protein Import in Pichia pastoris. Journal of Cell Biology, 1998, 140, 807-820.	2.3	82

#	Article	IF	CITATIONS
109	Cytosolic Aspartate Aminotransferase Encoded by the AAT2 Gene is Targeted to the Peroxisomes in Oleate-Grown Saccharomyces Cerevisiae. FEBS Journal, 1997, 247, 972-980.	0.2	46
110	Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S.cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO Journal, 1997, 16, 7326-7341.	3.5	206
111	Proteins involved in peroxisome biogenesis and functioning. BBA - Biomembranes, 1996, 1286, 269-283.	7.9	77
112	Analysis of the Carboxyl-terminal Peroxisomal Targeting Signal 1 in a Homologous Context in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 26375-26382.	1.6	147
113	The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import PTS1-containing proteins Journal of Cell Biology, 1996, 135, 97-109.	2.3	220
114	Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene EMBO Journal, 1995, 14, 3472-3479.	3.5	170
115	Transport of Proteins and Metabolites across the Impermeable Membrane of Peroxisomes. Cold Spring Harbor Symposia on Quantitative Biology, 1995, 60, 649-655.	2.0	13
116	PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 11782-11786.	3.3	237
117	DNA binding properties of the integrase proteins of human immunodeficiency viruses types 1 and 2. Nucleic Acids Research, 1991, 19, 3821-3827.	6.5	141
118	From first report to clinical trials: a bibliometric overview and visualization of the development of Angelman syndrome research. Human Genetics, 0, , .	1.8	0