Huifeng Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4195095/publications.pdf

Version: 2024-02-01

49	2,091	22	43
papers	citations	h-index	g-index
53	53	53	2510
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373, 1523-1527.	12.6	274
2	<i>De Novo</i> Origination of a New Protein-Coding Gene in <i>Saccharomyces cerevisiae</i> Genetics, 2008, 179, 487-496.	2.9	209
3	Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nature Communications, 2018, 9, 448.	12.8	146
4	Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nature Communications, $2019, 10, 1378$.	12.8	128
5	A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Research, 2010, 20, 408-420.	12.0	110
6	Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Microbial Cell Factories, 2017, 16, 125.	4.0	95
7	Origin and evolution of new exons in rodents. Genome Research, 2005, 15, 1258-1264.	5.5	91
8	Short Homologous Sequences Are Strongly Associated with the Generation of Chimeric RNAs in Eukaryotes. Journal of Molecular Evolution, 2009, 68, 56-65.	1.8	77
9	Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microbial Cell Factories, 2017, 16, 165.	4.0	68
10	Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell, 2021, 184, 1377-1391.e14.	28.9	66
11	Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metabolic Engineering, 2019, 56, 142-153.	7.0	57
12	Evolution of Gene Regulation during Transcription and Translation. Genome Biology and Evolution, 2015, 7, 1155-1167.	2.5	52
13	Discovery and modification of cytochrome P450 for plant natural products biosynthesis. Synthetic and Systems Biotechnology, 2020, 5, 187-199.	3.7	47
14	Chromosome-level genome of Himalayan yew provides insights into the origin and evolution of the paclitaxel biosynthetic pathway. Molecular Plant, 2021, 14, 1199-1209.	8.3	46
15	The origin and evolution of the diosgenin biosynthetic pathway in yam. Plant Communications, 2021, 2, 100079.	7.7	44
16	Relaxation of yeast mitochondrial functions after whole-genome duplication. Genome Research, 2008, 18, 1466-1471.	5.5	38
17	Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. Plant Communications, 2021, 2, 100229.	7.7	37
18	Combining Protein and Metabolic Engineering Strategies for High-Level Production of <i>O</i> -Acetylhomoserine in <i>Escherichia coli</i> . ACS Synthetic Biology, 2019, 8, 1153-1167.	3.8	30

#	Article	IF	CITATIONS
19	Tinkering Evolution of Post-Transcriptional RNA Regulons: Puf3p in Fungi as an Example. PLoS Genetics, 2010, 6, e1001030.	3.5	28
20	Pleiotropy of the de novo-originated gene MDF1. Scientific Reports, 2014, 4, 7280.	3.3	28
21	Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis. Scientific Reports, 2016, 6, 24117.	3.3	28
22	<i>De Novo</i> Biosynthesis of Multiple Pinocembrin Derivatives in <i>Saccharomyces cerevisiae</i> ACS Synthetic Biology, 2020, 9, 3042-3051.	3.8	26
23	Combining protein and metabolic engineering to construct efficient microbial cell factories. Current Opinion in Biotechnology, 2020, 66, 27-35.	6.6	25
24	Diaphragmatic Eventration in Sisters with Asparagine Synthetase Deficiency: A Novel Homozygous ASNS Mutation and Expanded Phenotype. JIMD Reports, 2016, 34, 1-9.	1.5	24
25	PCPD: Plant cytochrome P450 database and web-based tools for structural construction and ligand docking. Synthetic and Systems Biotechnology, 2021, 6, 102-109.	3.7	24
26	Enzymatic DNA Synthesis by Engineering Terminal Deoxynucleotidyl Transferase. ACS Catalysis, 2022, 12, 2988-2997.	11.2	24
27	Recent advances in biocatalysis of nitrogen-containing heterocycles. Biotechnology Advances, 2022, 54, 107813.	11.7	23
28	Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2016, 9, 232.	6.2	22
29	Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae. Scientific Reports, 2015, 5, 14465.	3.3	20
30	<i>Zanthoxylum-</i> specific whole genome duplication and recent activity of transposable elements in the highly repetitive paleotetraploid <i>Z. bungeanum</i> genome. Horticulture Research, 2021, 8, 205.	6.3	19
31	Lysine Mutation of the Claw-Arm-Like Loop Accelerates Catalysis by Cellobiohydrolases. Journal of the American Chemical Society, 2019, 141, 14451-14459.	13.7	17
32	Engineering the 5′ UTR-Mediated Regulation of Protein Abundance in Yeast Using Nucleotide Sequence Activity Relationships. ACS Synthetic Biology, 2018, 7, 2709-2714.	3.8	16
33	Gene duplication in the genome of parasitic Giardia lamblia. BMC Evolutionary Biology, 2010, 10, 49.	3.2	14
34	Totally atom-economical synthesis of lactic acid from formaldehyde: combined bio-carboligation and chemo-rearrangement without the isolation of intermediates. Green Chemistry, 2020, 22, 6809-6814.	9.0	14
35	Rewiring of Posttranscriptional RNA Regulons: Puf4p in Fungi as an Example. Molecular Biology and Evolution, 2012, 29, 2169-2176.	8.9	12
36	Metabolic engineering of Yarrowia lipolytica for scutellarin production. Synthetic and Systems Biotechnology, 2022, 7, 958-964.	3.7	12

#	Article	IF	CITATIONS
37	Rapid evolution in a pair of recent duplicate segments of rice. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 50-57.	1.3	11
38	Coordinating Expression of RNA Binding Proteins with Their mRNA Targets. Scientific Reports, 2014, 4, 7175.	3.3	11
39	Synthesis of Ligustrazine from Acetaldehyde by a Combined Biological–Chemical Approach. ACS Synthetic Biology, 2020, 9, 2902-2908.	3.8	11
40	Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast. Science China Life Sciences, 2020, 63, 1734-1743.	4.9	11
41	Biocatalytic C-C Bond Formation for One Carbon Resource Utilization. International Journal of Molecular Sciences, 2021, 22, 1890.	4.1	9
42	Assembly and Analysis of the Genome Sequence of the Yeast Brettanomyces naardenensis CBS 7540. Microorganisms, 2019, 7, 489.	3.6	8
43	Origin and Evolution of Fusidane-Type Antibiotics Biosynthetic Pathway through Multiple Horizontal Gene Transfers. Genome Biology and Evolution, 2020, 12, 1830-1840.	2.5	7
44	<i>De Novo</i> Biosynthesis of Polydatin in <i>Saccharomyces cerevisiae</i> Journal of Agricultural and Food Chemistry, 2021, 69, 5917-5925.	5.2	6
45	Mitochondrial genome evolution in the Saccharomyces sensu stricto complex. PLoS ONE, 2017, 12, e0183035.	2.5	6
46	Growth of Novel Epistatic Interactions by Gene Duplication. Genome Biology and Evolution, 2011, 3, 295-301.	2.5	5
47	Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation. Molecular Biology and Evolution, 2017, 34, 2870-2878.	8.9	5
48	Creating an Unusual Glycine-Rich Motif in a Peptide Amidase Leads to Versatile Protein C-Terminal Traceless Functionalization. ACS Catalysis, 2022, 12, 8019-8026.	11.2	5
49	Directed Evolution of Propionyl-CoA Carboxylase for Succinate Biosynthesis. Trends in Biotechnology, 2021, 39, 330-331.	9.3	4