Cecilia Ferrantini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4194759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Myosin Isoforms on Cardiac Muscle Twitch of Mice, Rats and Humans. International Journal of Molecular Sciences, 2022, 23, 1135.	1.8	10
2	Do the Current Guidelines for Heart Failure Diagnosis and Treatment Fit with Clinical Complexity?. Journal of Clinical Medicine, 2022, 11, 857.	1.0	18
3	The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. Journal of Molecular and Cellular Cardiology, 2022, 166, 36-49.	0.9	7
4	Genotype-Driven Pathogenesis of Atrial Fibrillation in Hypertrophic Cardiomyopathy: The Case of Different TNNT2 Mutations. Frontiers in Physiology, 2022, 13, 864547.	1.3	5
5	Photoresponsive Polymerâ€Based Biomimetic Contractile Units as Building Block for Artificial Muscles. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5
6	Sealing tâ€ŧubules increases the energy cost of cardiac contraction. Acta Physiologica, 2021, 231, e13585.	1.8	0
7	Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 150, 77-90.	0.9	10
8	The relation between sarcomere energetics and the rate of isometric tension relaxation in healthy and diseased cardiac muscle. Journal of Muscle Research and Cell Motility, 2021, 42, 47-57.	0.9	19
9	Multiscale modeling of twitch contractions in cardiac trabeculae. Journal of General Physiology, 2021, 153, .	0.9	28
10	Mavacamten has a differential impact on force generation in myofibrils from rabbit psoas and human cardiac muscle. Journal of General Physiology, 2021, 153, .	0.9	25
11	Pathophysiology and Treatment of Hypertrophic Cardiomyopathy: New Perspectives. Current Heart Failure Reports, 2021, 18, 169-179.	1.3	19
12	The effect of variable troponin C mutation thin filament incorporation on cardiac muscle twitch contractions. Journal of Molecular and Cellular Cardiology, 2021, 155, 112-124.	0.9	13
13	Myopalladin knockout mice develop cardiac dilation and show a maladaptive response to mechanical pressure overload. ELife, 2021, 10, .	2.8	12
14	Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cellular and Molecular Life Sciences, 2021, 78, 7309-7337.	2.4	27
15	Quantification of Myocyte Disarray in Human Cardiac Tissue. Frontiers in Physiology, 2021, 12, 750364.	1.3	7
16	Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human-induced pluripotent stem cells. Cardiovascular Research, 2020, 116, 368-382.	1.8	47
17	Myocardial overexpression of ANKRD1 causes sinus venosus defects and progressive diastolic dysfunction. Cardiovascular Research, 2020, 116, 1458-1472.	1.8	15
18	T-tubule remodeling in human hypertrophic cardiomyopathy. Journal of Muscle Research and Cell Motility, 2020, 42, 305-322.	0.9	6

Cecilia Ferrantini

#	Article	IF	CITATIONS
19	Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Frontiers in Physiology, 2020, 11, 368.	1.3	9
20	Defining the diagnostic effectiveness of genes for inclusion in panels: the experience of two decades of genetic testing for hypertrophic cardiomyopathy at a single center. Genetics in Medicine, 2019, 21, 284-292.	1.1	54
21	Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. International Journal of Molecular Sciences, 2019, 20, 3799.	1.8	27
22	Electrophysiological and Contractile Effects of Disopyramide in Patients With Obstructive Hypertrophic Cardiomyopathy. JACC Basic To Translational Science, 2019, 4, 795-813.	1.9	35
23	A Novel Method of Isolating Myofibrils From Primary Cardiomyocyte Culture Suitable for Myofibril Mechanical Study. Frontiers in Cardiovascular Medicine, 2019, 6, 12.	1.1	21
24	Development of Light-Responsive Liquid Crystalline Elastomers to Assist Cardiac Contraction. Circulation Research, 2019, 124, e44-e54.	2.0	44
25	The homozygous K280N troponin T mutation alters cross-bridge kinetics and energetics in human HCM. Journal of General Physiology, 2019, 151, 18-29.	0.9	25
26	Late sodium current inhibitors to treat exerciseâ€induced obstruction in hypertrophic cardiomyopathy: an <i>in vitro</i> study in human myocardium. British Journal of Pharmacology, 2018, 175, 2635-2652.	2.7	49
27	Interplay Between Sub-Cellular Alterations of Calcium Release and T-Tubular Defects in Cardiac Diseases. Frontiers in Physiology, 2018, 9, 1474.	1.3	10
28	Altered Ca2+ and Na+ Homeostasis in Human Hypertrophic Cardiomyopathy: Implications for Arrhythmogenesis. Frontiers in Physiology, 2018, 9, 1391.	1.3	53
29	NaV1.8: a novel contributor to cardiac arrhythmogenesis in heart failure. Cardiovascular Research, 2018, 114, 1691-1693.	1.8	3
30	Electrical defects of the transverseâ€axial tubular system in cardiac diseases. Journal of Physiology, 2017, 595, 3815-3822.	1.3	15
31	The Relaxation Properties of Myofibrils Are Compromised by Amino Acids that Stabilize α-Tropomyosin. Biophysical Journal, 2017, 112, 376-387.	0.2	8
32	Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2017, 10, .	1.6	76
33	Optogenetics gets to the heart: A guiding light beyond defibrillation. Progress in Biophysics and Molecular Biology, 2017, 130, 132-139.	1.4	19
34	Pathogenesis of Hypertrophic Cardiomyopathy is Mutation Rather Than Disease Specific: A Comparison of the Cardiac Troponin T E163R and R92Q Mouse Models. Journal of the American Heart Association, 2017, 6, .	1.6	51
35	T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure. International Journal of Molecular Sciences, 2016, 17, 1471.	1.8	12
36	Isolation and Mechanical Measurements of Myofibrils from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cell Reports, 2016, 6, 885-896.	2.3	75

Cecilia Ferrantini

#	Article	IF	CITATIONS
37	Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation. Scientific Reports, 2016, 6, 35628.	1.6	105
38	Impact of Genotype on the Occurrence of Atrial Fibrillation in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2016, 117, 1151-1159.	0.7	25
39	R4496C RyR2 mutation impairs atrial and ventricular contractility. Journal of General Physiology, 2016, 147, 39-52.	0.9	22
40	Nebulette knockout mice have normal cardiac function, but show Z-line widening and up-regulation of cardiac stress markers. Cardiovascular Research, 2015, 107, 216-225.	1.8	27
41	Functional cardiac imaging by random access microscopy. Frontiers in Physiology, 2014, 5, 403.	1.3	10
42	Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovascular Research, 2014, 103, 248-257.	1.8	88
43	Clinical Phenotype and Outcome of Hypertrophic Cardiomyopathy Associated With Thin-Filament Gene Mutations. Journal of the American College of Cardiology, 2014, 64, 2589-2600.	1.2	118
44	Muscle dysfunction in hypertrophic cardiomyopathy: What is needed to move to translation?. Journal of Muscle Research and Cell Motility, 2014, 35, 37-45.	0.9	18
45	Faster crossâ€bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q <i>MYH7</i> mutation. Journal of Physiology, 2014, 592, 3257-3272.	1.3	62
46	Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15196-15201.	3.3	78
47	Impact of detubulation on force and kinetics of cardiac muscle contraction. Journal of General Physiology, 2014, 143, 783-797.	0.9	49
48	Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples. Journal of Visualized Experiments, 2014, , .	0.2	37
49	Regulation of intracellular Na+in health and disease: pathophysiological mechanisms and implications for treatment. Global Cardiology Science & Practice, 2013, 2013, 30.	0.3	18
50	Late Sodium Current Inhibition Reverses Electromechanical Dysfunction in Human Hypertrophic Cardiomyopathy. Circulation, 2013, 127, 575-584.	1.6	347
51	Patterns of Disease Progression in Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2012, 5, 535-546.	1.6	258
52	α-Tropomyosin with a D175N or E180G Mutation in Only One Chain Differs from Tropomyosin with Mutations in Both Chains. Biochemistry, 2012, 51, 9880-9890.	1.2	39
53	Effects of Chronic Atrial Fibrillation on Active and Passive Force Generation in Human Atrial Myofibrils. Circulation Research, 2010, 107, 144-152.	2.0	44
54	Mechanical and Energetic Consequences of HCM-Causing Mutations. Journal of Cardiovascular Translational Research, 2009, 2, 441-451.	1.1	58

4

#	Article	IF	CITATIONS
55	The familial hypertrophic cardiomyopathyâ€associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils. Journal of Physiology, 2008, 586, 3639-3644.	1.3	90
56	2P-149 Effects of TnT mutations causing hypertrophic cardiomyopathy on the physiological functions of single myofibrils(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S98.	0.0	0
57	Tension generation and relaxation in single myofibrils from human atrial and ventricular myocardium. Pflugers Archiv European Journal of Physiology, 2007, 454, 63-73.	1.3	85
58	Sarcomeric determinants of striated muscle relaxation kinetics. Pflugers Archiv European Journal of Physiology, 2005, 449, 505-517.	1.3	127
59	Relaxation Kinetics Following Sudden Ca2+ Reduction in Single Myofibrils from Skeletal Muscle. Biophysical Journal, 2002, 83, 2142-2151.	0.2	121
60	PARADOXICAL PROLONGATION OF QT INTERVAL DURING EXERCISE IN PATIENTS WITH HCM: CELLULAR MECHANISMS AND IMPLICATIONS FOR DIASTOLIC FUNCTION. European Heart Journal Open, 0, , .	0.9	1