Antonio Canosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/419455/publications.pdf

Version: 2024-02-01

218592 197736 2,951 83 26 49 h-index citations g-index papers 86 86 86 3534 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 168-173.	0.9	233
2	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	9.4	223
3	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	9.4	198
4	Amyotrophic Lateral Sclerosis Outcome Measures and the Role of Albumin and Creatinine. JAMA Neurology, 2014, 71, 1134.	4.5	150
5	The multistep hypothesis of ALS revisited. Neurology, 2018, 91, e635-e642.	1.5	146
6	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	2.8	118
7	Cognitive impairment across ALS clinical stages in a population-based cohort. Neurology, 2019, 93, e984-e994.	1.5	115
8	The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 844-852.	3.3	103
9	ALS phenotype is influenced by age, sex, and genetics. Neurology, 2020, 94, e802-e810.	1.5	99
10	ALS clinical trials. Neurology, 2011, 77, 1432-1437.	1.5	96
11	Secular Trends of Amyotrophic Lateral Sclerosis. JAMA Neurology, 2017, 74, 1097.	4.5	85
12	¹⁸ F-FDG-PET correlates of cognitive impairment in ALS. Neurology, 2016, 86, 44-49.	1.5	84
13	Early weight loss in amyotrophic lateral sclerosis: outcome relevance and clinical correlates in a population-based cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 666-673.	0.9	73
14	Genetic architecture of ALS in Sardinia. Neurobiology of Aging, 2014, 35, 2882.e7-2882.e12.	1.5	60
15	TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. Brain Communications, 2020, 2, fcaa142.	1.5	55
16	<i>ATXN2</i> polyQ intermediate repeats are a modifier of ALS survival. Neurology, 2015, 84, 251-258.	1.5	52
17	Implementing Motor Unit Number Index (MUNIX) in a large clinical trial: Real world experience from 27 centres. Clinical Neurophysiology, 2018, 129, 1756-1762.	0.7	49
18	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	4.5	46

#	Article	IF	CITATIONS
19	TBK1 is associated with ALS and ALS-FTD in Sardinian patients. Neurobiology of Aging, 2016, 43, 180.e1-180.e5.	1.5	40
20	Metabolic spatial connectivity in amyotrophic lateral sclerosis as revealed by independent component analysis. Human Brain Mapping, 2016, 37, 942-953.	1.9	40
21	Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 373-379.	1.1	40
22	Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.	5.8	38
23	Influence of cigarette smoking on ALS outcome: a population-based study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1229-1233.	0.9	37
24	The Role of <i>APOE</i> i>in the Occurrence of Frontotemporal Dementia in Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 425.	4.5	37
25	NADPH oxidase (NOX2) activity is a modifier of survival in ALS. Journal of Neurology, 2014, 261, 2178-2183.	1.8	36
26	Interplay between spinal cord and cerebral cortex metabolism in amyotrophic lateral sclerosis. Brain, 2018, 141, 2272-2279.	3.7	33
27	Clinical epidemiology of amyotrophic lateral sclerosis in Liguria, Italy: An update of LIGALS register. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 535-542.	1.1	29
28	A PET/CT approach to spinal cord metabolism in amyotrophic lateral sclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 2061-2071.	3.3	27
29	Influence of arterial hypertension, type 2 diabetes and cardiovascular risk factors on ALS outcome: a population-based study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 590-597.	1.1	27
30	Telemedicine for patients with amyotrophic lateral sclerosis during COVID-19 pandemic: an Italian ALS referral center experience. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 308-311.	1.1	27
31	Common polymorphisms of <i>chemokine (Câ€X3 motif) receptor 1</i> gene modify amyotrophic lateral sclerosis outcome: A populationâ€based study. Muscle and Nerve, 2018, 57, 212-216.	1.0	25
32	Parkinsonian traits in amyotrophic lateral sclerosis (ALS): a prospective population-based study. Journal of Neurology, 2019, 266, 1633-1642.	1.8	25
33	Monocytes of patients with amyotrophic lateral sclerosis linked to gene mutations display altered TDPâ€43 subcellular distribution. Neuropathology and Applied Neurobiology, 2017, 43, 133-153.	1.8	23
34	Mutational Analysis of Known ALS Genes in an Italian Population-Based Cohort. Neurology, 2021, 96, e600-e609.	1.5	23
35	A de novo nonsense mutation of the FUS gene in an apparently familial amyotrophic lateral sclerosis case. Neurobiology of Aging, 2014, 35, 1513.e7-1513.e11.	1.5	21
36	ATXN2 is a modifier of phenotype in ALS patients of Sardinian ancestry. Neurobiology of Aging, 2015, 36, 2906.e1-2906.e5.	1.5	19

#	Article	IF	CITATIONS
37	Multicenter validation of [¹⁸ F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 570-577.	1.1	19
38	Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study. The Lancet Digital Health, 2022, 4, e359-e369.	5.9	19
39	Testing the diagnostic accuracy of [18F]FDG-PET in discriminating spinal- and bulbar-onset amyotrophic lateral sclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1117-1131.	3.3	18
40	Regional spreading of symptoms at diagnosis as a prognostic marker in amyotrophic lateral sclerosis: a population-based study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 291-297.	0.9	18
41	Prognostic role of slow vital capacity in amyotrophic lateral sclerosis. Journal of Neurology, 2020, 267, 1615-1621.	1.8	18
42	Validation of the revised classification of cognitive and behavioural impairment in ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 734-739.	0.9	17
43	Differential Neuropsychological Profile of Patients With Amyotrophic Lateral Sclerosis With and Without <i>C9orf72</i> Mutation. Neurology, 2021, 96, e141-e152.	1.5	17
44	The interplay among education, brain metabolism, and cognitive impairment suggests a role of cognitive reserve in Amyotrophic Lateral Sclerosis. Neurobiology of Aging, 2021, 98, 205-213.	1.5	15
45	Amyotrophic lateral sclerosis caregiver burden and patients' quality of life during COVID-19 pandemic. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 146-148.	1.1	15
46	Metabolic brain changes across different levels of cognitive impairment in ALS: a ¹⁸ F-FDG-PET study. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 357-363.	0.9	14
47	The role of arterial blood gas analysis (ABG) in amyotrophic lateral sclerosis respiratory monitoring. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 999-1000.	0.9	13
48	A familial ALS case carrying a novel p.G147C <i>SOD1</i> heterozygous missense mutation with non-executive cognitive impairment: FigureÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1437-1439.	0.9	11
49	Plateaus in amyotrophic lateral sclerosis progression: results from a populationâ€based cohort. European Journal of Neurology, 2020, 27, 1397-1404.	1.7	11
50	Longitudinal brain magnetic resonance imaging and realâ€time quaking induced conversion analysis in presymptomatic Creutzfeldt–Jakob disease. European Journal of Neurology, 2018, 25, e127-e128.	1.7	10
51	Brain metabolic changes across King's stages in amyotrophic lateral sclerosis: a 18F-2-fluoro-2-deoxy-d-glucose-positron emission tomography study. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1124-1133.	3.3	10
52	Brain metabolic correlates of apathy in amyotrophic lateral sclerosis: An 18Fâ€FDGâ€positron emission tomography stud. European Journal of Neurology, 2021, 28, 745-753.	1.7	10
53	Italian adaptation of the Beaumont Behavioral Inventory (BBI): psychometric properties and clinical usability. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 81-86.	1.1	10
54	Developments in the assessment of non-motor disease progression in amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 2021, 21, 1419-1440.	1.4	10

#	Article	IF	Citations
55	The diagnostic value of the Italian version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 527-531.	1.1	10
56	Spatial epidemiology of amyotrophic lateral sclerosis in Piedmont and Aosta Valley, Italy: a populationâ€based cluster analysis. European Journal of Neurology, 2018, 25, 756-761.	1.7	9
57	Validation of the Italian version of self-administered ALSFRS-R scale. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 151-153.	1.1	9
58	Amyotrophic lateral sclerosis with SOD1 mutations shows distinct brain metabolic changes. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2242-2250.	3.3	9
59	Correlation between <i>Apolipoprotein E</i> genotype and brain metabolism in amyotrophic lateral sclerosis. European Journal of Neurology, 2019, 26, 306-312.	1.7	8
60	The Characteristics of Cognitive Impairment in ALS Patients Depend on the Lateralization of Motor Damage. Brain Sciences, 2020, 10, 650.	1.1	8
61	What is amyotrophic lateral sclerosis prevalence?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 203-208.	1.1	8
62	Arterial blood gas analysis: base excess and carbonate are predictive of noninvasive ventilation adaptation and survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 33-39.	1.1	8
63	Social cognition deficits in amyotrophic lateral sclerosis: A pilot crossâ€sectional populationâ€based study. European Journal of Neurology, 2022, 29, 2211-2219.	1.7	8
64	Respiratory support in a population-based ALS cohort: demographic, timing and survival determinants. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 1024-1026.	0.9	8
65	Lifetime sport practice and brain metabolism in Amyotrophic Lateral Sclerosis. Neurolmage: Clinical, 2020, 27, 102312.	1.4	7
66	The heterozygous deletion c.1509_1510delAG in exon 14 of FUS causes an aggressive childhood-onset ALS with cognitive impairment. Neurobiology of Aging, 2021, 103, 130.e1-130.e7.	1.5	7
67	Effects of intracellular calcium accumulation on proteins encoded by the major genes underlying amyotrophic lateral sclerosis. Scientific Reports, 2022, 12, 395.	1.6	7
68	A novel p.E121G heterozygous missense mutation of SOD1 in an apparently sporadic ALS case with a 14-year course. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 127-128.	1.1	6
69	Amyotrophic lateral sclerosis onset after prolonged treatment with a VEGF receptors inhibitor. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 129-130.	1.1	5
70	Acoustic reflex patterns in amyotrophic lateral sclerosis. European Archives of Oto-Rhino-Laryngology, 2017, 274, 679-683.	0.8	5
71	Neck flexor weakness at diagnosis predicts respiratory impairment in amyotrophic lateral sclerosis. European Journal of Neurology, 2021, 28, 1181-1187.	1.7	4
72	Do ecological factors influence the clinical presentation of amyotrophic lateral sclerosis?. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1017-1019.	0.9	4

#	Article	IF	CITATIONS
73	Brain ¹⁸ fluorodeoxyglucose-positron emission tomography changes in amyotrophic lateral sclerosis with <i>TARDBP</i> mutations. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 1021-1023.	0.9	4
74	A novel p.Ser108LeufsTer15 SOD1 mutation leading to the formation of a premature stop codon in an apparently sporadic ALS patient: insights into the underlying pathomechanisms. Neurobiology of Aging, 2018, 72, 189.e11-189.e17.	1.5	3
75	A familial amyotrophic lateral sclerosis pedigree discordant for a novel p.Glu46Asp heterozygous OPTN variant and the p.Ala5Val heterozygous SOD1 missense mutation. Journal of Clinical Neuroscience, 2020, 75, 223-225.	0.8	3
76	GBA variants influence cognitive status in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, , jnnp-2021-327426.	0.9	3
77	Causal associations of genetic factors with clinical progression in amyotrophic lateral sclerosis. Computer Methods and Programs in Biomedicine, 2022, 216, 106681.	2.6	3
78	A novel splice site FUS mutation in a familial ALS case: effects on protein expression. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, , 1-9.	1.1	2
79	Validation of the Italian version of the Rasch-Built Overall Amyotrophic Lateral Sclerosis Disability Scale (ROADS) administered to patients and their caregivers. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 424-429.	1.1	2
80	Tailoring patients' enrollment in ALS clinical trials: the effect of disease duration and vital capacity cutoffs. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 108-115.	1.1	1
81	Can amyotrophic lateral sclerosis progression really pause? A cohort study using the medical research council scale. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, , 1-7.	1.1	1
82	Acute, Hemorrhagic, Necrotizing Pancreatitis Associated With Riluzole Treatment in a Patient With Amyotrophic Lateral Sclerosis. American Journal of Therapeutics, 2020, Publish Ahead of Print, .	0.5	1
83	Comorbidity of Cervical Spondylogenic Myelopathy and Amyotrophic Lateral Sclerosis: When Electromyography Makes the Difference in Diagnosis. European Neurology, 2020, 83, 626-629.	0.6	1