Francesco Tedesco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/419439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resilient Model Predictive Control for Constrained Cyber-Physical Systems Subject to Severe Attacks on the Communication Channels. IEEE Transactions on Automatic Control, 2022, 67, 1822-1836.	5.7	19
2	Fault detection and isolation for uncertain linear systems: A robust moving horizon estimation scheme using LMIs. Journal of the Franklin Institute, 2022, 359, 1692-1712.	3.4	5
3	Improving Lighting Efficiency for Traffic Road Networks: A Reputation Mechanism Based Approach. IEEE Transactions on Control of Network Systems, 2022, 9, 1743-1753.	3.7	5
4	A Reputation Mechanism for Dynamical Interactions in Multiagent Systems Under Quality of Service Requirements. IEEE Transactions on Automatic Control, 2021, 66, 5021-5028.	5.7	4
5	An Adaptive Frequency-Locked-Loop Approach for the Turbocharger Rotational Speed Estimation via Acoustic Measurements. IEEE Transactions on Control Systems Technology, 2021, 29, 1437-1449.	5.2	6
6	An Air-to-Fuel ratio estimation strategy for turbocharged spark-ignition engines based on sparse binary HEGO sensor measures and hybrid linear observers. Control Engineering Practice, 2021, 107, 104694.	5.5	7
7	Resilience Against Replay Attacks: A Distributed Model Predictive Control Scheme for Networked Multi-Agent Systems. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 628-640.	13.1	33
8	Leader-Follower Multi-Agent Systems: A Model Predictive Control Scheme Against Covert Attacks. , 2021, , .		2
9	Sensors Selection via a Distributed Reputation Mechanism: An Information Fusion Approach. , 2021, , .		0
10	Fault-tolerant sensor reconciliation schemes based on unknown input observers. International Journal of Control, 2020, 93, 669-679.	1.9	3
11	A resilient control strategy for cyber-physical systems subject to denial of service attacks: A leader-follower set-theoretic approach. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 1204-1214.	13.1	13
12	Turn-Based Command Governor Strategies for Interconnected Dynamical Systems with Time-Varying Couplings. , 2020, , .		2
13	Full-Car Multivariable Control Strategies for Energy Harvesting by Regenerative Suspension Systems. , 2020, , .		1
14	Advanced Adaptive Street Lighting Systems for Smart Cities. Smart Cities, 2020, 3, 1495-1512.	9.4	50
15	A receding horizon set-theoretic approach oriented to predictive maintenance of actuators in linear systems. , 2020, , .		1
16	H 2 and M & x0D; &	1.9	1
17	A distributed resilient control strategy for leader-follower systems under replay attacks. , 2020, , .		1
18	Load/Frequency Control in the presence of Renewable Energy Systems: a Reference-Offset Governor approach IFAC-PapersOnLine, 2020, 53, 12548-12553.	0.9	5

#	Article	IF	CITATIONS
19	Adaptive Fault-Tolerant Control Allocation Schemes for Overactuated Systems with Actuator and Bias Faults. , 2020, , .		1
20	Turbocharger Rotational Speed Estimation via Acoustic Measurements. IFAC-PapersOnLine, 2019, 52, 273-278.	0.9	2
21	Resilient Control for Cyber-Physical Systems Subject to Replay Attacks. , 2019, 3, 984-989.		56
22	Turn-Based Supervision Architectures for Dynamic Networks involving Plug-and-Play Operations. IFAC-PapersOnLine, 2019, 52, 90-95.	0.9	4
23	Contactless Automotive Turbocharger Speed Estimation via Acoustic Measurements. , 2019, , .		1
24	Plug-and-Play Distributed Supervision Schemes for Decoupled Interconnected Dynamical Systems. , 2019, , .		1
25	A Leader-Follower Set-theoretic Approach for Cyber-Physical Systems against Denial-of-Service Attacks. , 2019, , .		0
26	Air-to-Fuel Ratio Estimation in Turbocharged Spark-Ignition Engines based on Binary HEGO Sensors. , 2019, , .		0
27	A distributed command governor based on graph colorability theory. International Journal of Robust and Nonlinear Control, 2018, 28, 3056-3072.	3.7	9
28	Centralized and Distributed Command Governor Approaches for Water Supply Systems Management. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 586-595.	9.3	16
29	A multiobjective Hâ^ž control strategy for energy harvesting in regenerative vehicle suspension systems. International Journal of Control, 2018, 91, 741-754.	1.9	15
30	A distributed model predictive control scheme for leader–follower multi-agent systems. International Journal of Control, 2018, 91, 369-382.	1.9	32
31	Use of LPV-LFT Unknown Input Observers for the Design of Fault Tolerant Sensor Reconciliation Schemes. , 2018, , .		1
32	Fault-Tolerant Sensor Reconciliation Schemes via LFT Unknown Input Observers. IFAC-PapersOnLine, 2018, 51, 874-879.	0.9	2
33	Sensor selection schemes for fault tolerant state estimation via sensor trustworthiness. IFAC-PapersOnLine, 2018, 51, 880-885.	0.9	Ο
34	On the Link Between Multi-Coloring Problems for Graphs and Distributed Supervision of Interconnected Systems. , 2018, , .		0
35	A LPV modeling of turbocharged spark-ignition automotive engine oriented to fault detection and isolation purposes. Journal of the Franklin Institute, 2018, 355, 6710-6745.	3.4	15
36	A smart city adaptive lighting system. , 2018, , .		14

#	Article	IF	CITATIONS
37	Unbiased Estimation of Sinusoidal Signal Parameters via Discrete-Time Frequency-Locked-Loop Filters. IEEE Transactions on Automatic Control, 2017, 62, 1484-1490.	5.7	25
38	Command Governor Strategies for the Online Management of Reactive Power in Smart Grids With Distributed Generation. IEEE Transactions on Automation Science and Engineering, 2017, 14, 449-460.	5.2	11
39	Distributed iterative command governor schemes for interconnected linear systems. International Journal of Robust and Nonlinear Control, 2017, 27, 4788-4807.	3.7	1
40	Command governor for constrained switched systems with scheduled model transition dwell times. International Journal of Robust and Nonlinear Control, 2017, 27, 4949-4967.	3.7	4
41	A Command Governor Approach for the Voltage Control in Smart Grids with Distributed Generation and Storage Devices. IFAC-PapersOnLine, 2017, 50, 10003-10008.	0.9	1
42	Reputation based mechanisms for distributed estimation in sensor networks. , 2017, , .		1
43	A fault-tolerant sensor reconciliation scheme based on LPV Unknown Input Observers. , 2016, , .		8
44	A leader-follower architecture for Load Frequency Control purposes against cyber attacks in power grids - Part I. , 2016, , .		1
45	A leader-follower architecture for Load Frequency Control purposes against cyber attacks in power grids - Part II. , 2016, , .		5
46	A distributed Command Governor approach for the online management of reactive power in smart grids with Distributed Generation. , 2016, , .		0
47	Reactive Power Management for Voltage Rise Mitigation in Distribution Networks with Distributed Generation: a Command Governor Approach. IFAC-PapersOnLine, 2016, 49, 41-46.	0.9	0
48	A parallel distributed supervision strategy for multi-agent networked systems. Systems and Control Letters, 2016, 97, 115-124.	2.3	3
49	A distributed constrained model predictive control scheme for networked leader-follower formations. , 2016, , .		2
50	Theoretical advances on Economic Model Predictive Control with time-varying costs. Annual Reviews in Control, 2016, 41, 218-224.	7.9	18
51	Distributed Supervisory Strategies forÂMulti-agent Networked Systems. Studies in Systems, Decision and Control, 2016, , 411-427.	1.0	0
52	A networked-based MPC architecture for constrained LPV systems. IFAC-PapersOnLine, 2015, 48, 158-163.	0.9	3
53	Theoretical advances on Economic Model Predictive Control with time-varying costs. IFAC-PapersOnLine, 2015, 48, 272-277.	0.9	4
54	Economic Model Predictive Control with parameter-varying cost and guaranteed average performance. , 2015, , .		5

#	Article	IF	CITATIONS
55	A dwell-time based Command Governor approach for constrained switched systems. , 2015, , .		3
56	Economic Model Predictive Control-Based Strategies for Cost-Effective Supervision of Community Microgrids Considering Battery Lifetime. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 1067-1077.	5.4	29
57	Reachability analysis of networked leader-follower formations. IFAC-PapersOnLine, 2015, 48, 123-128.	0.9	4
58	Actuator Fault Tolerant Control: A Receding Horizon Set-Theoretic Approach. IEEE Transactions on Automatic Control, 2015, 60, 2225-2230.	5.7	16
59	Model predictive control for constrained networked systems subject to data losses. Automatica, 2015, 54, 272-278.	5.0	65
60	A networked-based receding horizon scheme for constrained LPV systems. European Journal of Control, 2015, 25, 69-75.	2.6	3
61	Fault-Tolerant Distributed Load/Frequency Coordination Strategies for Multi-Area Power MicroGrids. IFAC-PapersOnLine, 2015, 48, 54-59.	0.9	3
62	On average performance of Economic Model Predictive Control with time-varying cost and terminal constraints. , 2015, , .		5
63	Discrete-time Frequency-Locked-Loop filters for exact asymptotic rejection of sinusoidal disturbances. , 2014, , .		1
64	Networked Control Systems: A Polynomial Receding Horizon Approach. IEEE Transactions on Control of Network Systems, 2014, 1, 318-327.	3.7	6
65	A distributed command governor strategy for the operational control of drinking water networks. , 2014, , .		1
66	A reconfigurable aircraft control scheme based on an hybrid Command Governor supervisory approach. , 2014, , .		0
67	Gain-scheduling control of electromagnetic regenerative shock absorbers for energy harvesting by road unevenness. , 2014, , .		3
68	Collision avoidance command governor for multi-vehicle unmanned systems. International Journal of Robust and Nonlinear Control, 2014, 24, 2309-2330.	3.7	15
69	Improved Feed-Forward Command Governor Strategies for Constrained Discrete-Time Linear Systems. IEEE Transactions on Automatic Control, 2014, 59, 216-223.	5.7	13
70	A Distributed Multi-Agent Command Governor Strategy for the Coordination of Networked Interconnected Systems. IEEE Transactions on Automatic Control, 2014, 59, 2099-2112.	5.7	26
71	Faultâ€ŧolerant distributed load/frequency supervisory strategies for networked multiâ€area microgrids. International Journal of Robust and Nonlinear Control, 2014, 24, 1380-1402.	3.7	21
72	A receding horizon scheme for discrete-time polytopic linear parameter varying systems in networked architectures. Journal of Physics: Conference Series, 2014, 570, 032001.	0.4	0

#	Article	IF	CITATIONS
73	A distributed obstacle avoidance MPC strategy for leader-follower formations. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 2570-2575.	0.4	5
74	A Cooperative Game Theoretical Approach to Distributed Iterative Command Governor Schemes. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 9406-9411.	0.4	1
75	On the Comparison of Predictive Control and Command Governor Approaches for Operational Management of Drinking Water Networks: A Case Study. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 6228-6233.	0.4	2
76	Scalability and Performance Improvement of Distributed Sequential Command Governor Strategies via Graph Colorability Theory. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 9400-9405.	0.4	9
77	The Distributed Command Governor Approach in a Nutshell. Intelligent Systems, Control and Automation: Science and Engineering, 2014, , 259-274.	0.5	5
78	Distributed parallel coordination-by-constraint strategies in networked multi-area power systems. , 2013, , .		0
79	Discrete-time Frequency-Locked-Loop filters for parameters estimation of sinusoidal signals. , 2013, , .		6
80	A distributed Command Governor Approach for voltage regulation in Medium Voltage power grids with distributed generation. , 2013, , .		7
81	A distributed receding horizon control scheme for leader-follower architectures: a set-theoretic approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 377-382.	0.4	6
82	A parallel distributed coordination-by-constraint strategy for multi-agent networked systems. , 2012, ,		7
83	A Distributed Parallel Command Governor Strategy for the Coordination of Multi-agent Networked Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 478-483.	0.4	10
84	Controllability analysis of uncertain polytopic systems with time-varying state delay. , 2012, , .		1
85	Actuator fault tolerant control: A set-theoretic approach. , 2012, , .		6
86	Distributed Reference Management Strategies for Networked Water Distribution Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 8951-8956.	0.4	5
87	Sensorless supervision of linear dynamical systems: The Feed-Forward Command Governor approach. Automatica, 2011, 47, 1294-1303.	5.0	27
88	Constrained load/frequency control problems in networked multi-area power systems. Journal of the Franklin Institute, 2011, 348, 832-852.	3.4	34
89	Distributed coordination-by-constraint strategies for multi-agent networked systems. , 2011, , .		9
90	A liveliness analysis of a distributed constrained coordination strategy for multi-agent linear systems. , 2011, , .		12

6

#	Article	IF	CITATIONS
91	Distributed coordination-by-constraint strategies in networked multi-area power systems. , 2011, , .		5
92	Receding horizon control for constrained networked systems subject to data-losses. , 2011, , .		7
93	Improved Feed-Forward Command Governor strategies for discrete-time time-invariant linear systems. , 2011, , .		2
94	Distributed Coordination Strategies for Interconnected Multi-Agent Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 403-408.	0.4	7
95	A FeedForward Command Governor Strategy for Constrained Linear Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 1023-1028.	0.4	1
96	Distributed collision avoidance for interacting vehicles: a command governor approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 293-298.	0.4	20
97	Distributed Coordination-by-Constraint Strategies for Networked Control Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 144-149.	0.4	6
98	A resilient control strategy for networked multi-agent systems subject to covert attacks. Transactions of the Institute of Measurement and Control, 0, , 014233122110212.	1.7	1
99	?â^ž calibratable LPV control strategies for torque control in automotive turbocharged engines. International Journal of Control, 0, , 1-18.	1.9	4
100	Supervision of Community Based Microgrids: an Economic Model Predictive Control approach. Renewable Energy and Power Quality Journal, 0, , 172-177.	0.2	0
101	Predictive maintenance of actuators in linear systems: A receding horizon setâ€theoretic approach. International Journal of Robust and Nonlinear Control, 0, , .	3.7	1