
Dmitry Borisov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4194122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of Redox Ion-Exchange Materials Based on Petroleum Asphaltenes. Petroleum Chemistry, 2022, 62, 222-228.	1.4	3
2	Extraction of Highly Condensed Polyaromatic Components from Petroleum Asphaltenes. Petroleum Chemistry, 2021, 61, 424-430.	1.4	3
3	Preparation of Asphaltene-Based Anion-Exchange Resins and Their Adsorption Capacity in the Treatment of Phenol-Containing Wastewater. Petroleum Chemistry, 2021, 61, 624-630.	1.4	5
4	Non-Porous Sulfonic Acid Catalysts Derived from Vacuum Residue Asphaltenes for Glycerol Valorization via Ketalization with Acetone. Catalysts, 2021, 11, 776.	3.5	4
5	Nitration of Petroleum Asphaltenes with Concentrated Nitric Acid under Various Conditions. Chemistry and Technology of Fuels and Oils, 2021, 57, 645-652.	0.5	3
6	Application of Ethylene Tar as an Additive in Visbreaking of Petroleum Vacuum Residue. Energy & Fuels, 2021, 35, 15684-15694.	5.1	4
7	Adsorption of Phenol by Nitro and Amino Derivatives of Petroleum Asphaltenes. Chemistry and Technology of Fuels and Oils, 2021, 57, 758-763.	0.5	0

8 ĐŸĐ¾Đ»ÑƒÑ‡ĐµĐ½Đ,е аĐ½Đ,Đ¾Đ½D,Ñ,Đ¾Đ² Đ½Đ° Đ¾ÑĐ½Đ¾Đ²Đµ аÑÑ"аĐ»ÑŒÑ,еĐ½Đ¾Đ² Đ, Đ,Ñ... аĐ ÑĐ¾Ñ€ł

9	Oxidation of Petroleum Asphaltenes Coupled with Iodination. Chemistry and Technology of Fuels and Oils, 2020, 56, 558-569.	0.5	3
10	Modeling of the Reactivity of Asphaltenes in Electrophilic Substitution Reactions. Chemistry and Technology of Fuels and Oils, 2020, 56, 550-557.	0.5	0
11	Study of the heavy oil asphaltenes oxidation products composition using EPR and IR spectroscopy. Petroleum Science and Technology, 2020, 38, 992-997.	1.5	7
12	Synthesis of Asphaltene-Based Strongly Acidic Sulfonated Cation Exchangers and Determination of Their Catalytic Properties in the 2,2-Dimethyl-1,3-Dioxolane Synthesis Reaction. Petroleum Chemistry, 2020, 60, 709-715.	1.4	17
13	Simple Methods for the Separation of Various Subfractions from Coal and Petroleum Asphaltenes. Energy & Fuels, 2020, 34, 6523-6543.	5.1	7
14	Composite materials based on polyethylene and high molecular weight oil components. AIP Conference Proceedings, 2020, , .	0.4	0
15	Assessing the Catalytic Ability of Sulfocationites Based on Oil Asphaltenes in the Synthesis of Pyrazolidin-3-One. Catalysis in Industry, 2020, 12, 323-329.	0.7	1
16	Changes in the composition of heavy oil during thermolysis in the presence of molten sodium without hydrogen. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, , 1-11.	2.3	0
17	Applicability of Express Methods of Determination of Efficiency of Solvents for Recovery of Heavy Oil from Carbonate Reservoirs. Chemistry and Technology of Fuels and Oils, 2019, 55, 568-576.	0.5	1
18	Oxidative Cleavage of Asphaltenes Under Mild Conditions. Chemistry and Technology of Fuels and Oils, 2019, 55, 552-556.	0.5	5

DMITRY BORISOV

#	Article	IF	CITATIONS
19	Variation of heavy oil composition during thermolysis with the addition of kerosene fraction of hydrocracking in flow reactor. Petroleum Science and Technology, 2019, 37, 323-328.	1.5	4
20	Heavy Oil Residues: Application as a Low-Cost Filler in Polymeric Materials. Civil Engineering Journal (Iran), 2019, 5, 2554-2568.	3.9	11
21	Chromatographic Isolation of Petroleum Vanadyl Porphyrins Using Sulfocationites as Sorbents. Energy & Fuels, 2018, 32, 161-168.	5.1	20
22	Composition of the Products of Thermolysis of Heavy Oil with the Addition of Light Hydrocracked Naphtha. Petroleum Science and Technology, 2018, 36, 1683-1689.	1.5	5
23	Physical modeling of the composite solvent injection to improve the ultra-viscous oil recovery efficiency steam-assisted gravity drainage. Journal of Petroleum Science and Engineering, 2018, 169, 337-343.	4.2	3
24	Physical modeling of ultraviscous oil displacement by using solvent on a large model of oil reservoir. Journal of Petroleum Science and Engineering, 2017, 154, 457-461.	4.2	7
25	Differentiation of heavy oils according to the vanadium and nickel content in asphaltenes and resins. Petroleum Chemistry, 2017, 57, 849-854.	1.4	22
26	Role of Vanadylporphyrins in the Flocculation and Sedimentation of Asphaltenes of Heavy Oils with High Vanadium Content. Energy & Fuels, 2017, 31, 13382-13391.	5.1	18
27	Chromatographic isolation of vanadyl porphyrins from heavy oil resins. Russian Chemical Bulletin, 2017, 66, 1450-1455.	1.5	13
28	Inhibition of Asphaltene Precipitation by Resins with Various Contents of Vanadyl Porphyrins. Energy & Fuels, 2016, 30, 8997-9002.	5.1	19
29	Concentrations of vanadium and nickel and their ratio in heavy oil asphaltenes. Petroleum Chemistry, 2016, 56, 16-20.	1.4	31
30	Features of the composition of vanadyl porphyrins in the crude extract of asphaltenes of heavy oil with high vanadium content. Petroleum Science and Technology, 2016, 34, 177-183.	1.5	32
31	Composition and Properties of Oxidation Products of Heavy Oil Resid Asphaltenes. Chemistry and Technology of Fuels and Oils, 2015, 51, 222-230.	0.5	4
32	Sulfuric Acid Assisted Extraction and Fractionation of Porphyrins From Heavy Petroleum Residuals With a High Content of Vanadium and Nickel. Petroleum Science and Technology, 2015, 33, 992-998.	1.5	5
33	Polar-solvent fractionation of asphaltenes from heavy oil and their characterization. Petroleum Chemistry, 2013, 53, 81-86.	1.4	18
34	Interrelation of Flocculation, Precipitation, and Structure of Asphaltene Fractions. Chemistry and Technology of Fuels and Oils, 2013, 49, 25-31.	0.5	6
35	Variation of the composition of asphaltenes in the course of bitumen aging in the presence of antioxidants. Russian Journal of Applied Chemistry, 2013, 86, 1070-1075.	0.5	17
36	Hydrogenation of nanostructured alloys and composites based on magnesium. Russian Chemical Bulletin, 2011, 60, 1848-1857.	1.5	6

DMITRY BORISOV

#	Article	IF	CITATIONS
37	Metallography and hydrogenation behaviour of the alloy Mg-72mass%–Ni-20mass%–La-8mass%. Journal of Alloys and Compounds, 2007, 446-447, 183-187.	5.5	12
38	Metal Hydride Accumulators of Hydrogen on the Basis of Alloys of Magnesium and Rare-Earth Metals with Nickel. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2004, , 143-146.	0.1	4
39	Isolation of Porphyrins from Heavy Oil Objects. , 0, , .		4
40	Experimental Study of the Effect of Composite Solvent and Asphaltenes Contents on Efficiency of Heavy Oil Recovery Processes at Injection of Light Hydrocarbons. , 0, , .		2
41	Features of composition of heavy oil thermolysis products produced with addition of maltene fraction. Petroleum Science and Technology, 0, , 1-10.	1.5	0