Pascal A Baltzer

List of Publications by Year in descending order

[^0]| $\begin{gathered} 280 \\ \text { papers } \end{gathered}$ | $\begin{gathered} 8,939 \\ \text { citations } \end{gathered}$ | $\begin{gathered} 49 \\ \text { h-index } \end{gathered}$ | 77
 g-index |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 327 \\ \text { all docs } \end{gathered}$ | 327
 docs citations | 327
 times ranked | 7192
 citing authors |

\＃	Article	IF	Citations
1	Breast MRI：EUSOBI recommendations for womenâ $€^{T M}$ s information．European Radiology，2015，25， 3669－3678．	2.3	330
2	Diffusion－weighted imaging of the breastâ€＂a consensus and mission statement from the EUSOBI International Breast Diffusion－Weighted Imaging working group．European Radiology，2020，30， 1436－1450．	2.3	255
3	Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients．Investigative Radiology，2019，54，110－117．	3.5	185
4	Second International Consensus Conference on lesions of uncertain malignant potential in the breast（B3 lesions）．Breast Cancer Research and Treatment，2019，174，279－296．	1.1	179
5	Markers of sarcopenia quantified by computed tomography predict adverse long－term outcome in patients with resected oesophageal or gastro－oesophageal junction cancer．European Radiology，2016， 26，1359－1367．	2.3	172
6	False－Positive Findings at Contrast－Enhanced Breast MRI：A BI－RADS Descriptor Study．American Journal of Roentgenology，2010，194，1658－1663．	1.0	167
7	Diagnostic Utility of Second－Look US for Breast Lesions Identified at MR Imaging：Systematic Review and Meta－Analysis．Radiology，2014，273，401－409．	3.6	156
8	Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging（EUSOBI）．European Radiology，2022，32，4036－4045．	2.3	137
9	postion paper on screening tor oreast cancer by the European soclety or breast maging（zusoul）and 30 national breast radiology bodies from Austria，Belgium，Bosnia and Herzegovina，Bulgaria，Croatia， Czech Republic，Denmark，Estonia，Finland，France，Germany，Greece，Hungary，Iceland，Ireland，Italy， Israel，Lithuania，Moldova，The Netherlands，Norway，Poland，Portugal，Romania，Serbia，Slovakia，	2.3	136
10	Diffusion－Weighted Imaging With Apparent Diffusion Coefficient Mapping for Breast Cancer Detection as a Stand－Alone Parameter．Investigative Radiology，2018，53，587－595．	3.5	130

11 Sensitivity and specificity of unenhanced MR mammography（DWI combined with T2－weighted TSE）Tj ETQq1 10.784314 rgBT／Overl

14 Diagnostic Performance of Breast Magnetic Resonance Imaging in Non－Calcified Equivocal Breast
$1.1 \quad 110$
Findings：Results from a Systematic Review and Meta－Analysis．PLoS ONE，2016，11，e0160346．
Improved Diagnostic Accuracy With Multiparametric Magnetic Resonance Imaging of the Breast Using
Dynamic Contrast－Enhanced Magnetic Resonance Imaging，Diffusion－Weighted Imaging，and
3－Dimensional Proton Magnetic Resonance Spectroscopic Imaging．Investigative Radiology，2014，49，

$421-430$ | Application of MR Mammography Beyond Local Staging：Is There a Potential to Accurately Assess |
| :--- |
| $16 \quad$Axillary Lymph Nodes？Evaluation of an Extended Protocol in an Initial Prospective Study．American
 Journal of Roentgenology，2011，196，W641－W647． |
| 17 |

Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo planar
19 imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques. European

23	Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Into Imaging, 2018, 9, 449-461.	1.6	95
24	68Ga-PSMA 11 ligand PET imaging in patients with biochemical recurrence after radical prostatectomy â€" diagnostic performance and impact on therapeutic decision-making. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 235-242.	3.3	89
25	Head-to-head comparison of PI-RADS v2 and PI-RADS v1. European Journal of Radiology, 2016, 85, 1125-1131.	1.2	88
26	MRI-only lesions: application of diffusion-weighted imaging obviates unnecessary MR-guided breast biopsies. European Radiology, 2014, 24, 1204-1210.	2.3	87
27	Quantitative Apparent Diffusion Coefficient as a Noninvasive Imaging Biomarker for the Differentiation of Invasive Breast Cancer and Ductal Carcinoma In Situ. Investigative Radiology, 2015, 50, 95-100.	3.5	87

Malignancy rates and diagnostic performance of the Bosniak classification for the diagnosis of cystic
renal lesions in computed tomography â $€^{\text {" }}$ a systematic review and meta-analysis. European Radiology,
$2017,27,2239-2247$.
30 Improved Differentiation of Benign and Malignant Breast Tumors with Multiparametric
18Fluorodeoxyglucose Positron Emission Tomography Magnetic Resonance Imaging: A Feasibility Study.
3.2

82 Clinical Cancer Research, 2014, 20, 3540-3549.
Diffusion-weighted imaging of breast lesions: Region-of-interest placement and different ADC
parameters influence apparent diffusion coefficient values. European Radiology, 2017, 27, 1883-1892.

32 Potential of Noncontrast Magnetic Resonance Imaging With Diffusion-Weighted Imaging in Characterization of Breast Lesions. Investigative Radiology, 2018, 53, 229-235.
3.5

81

> 33 Combined reading of Contrast Enhanced and Diffusion Weighted Magnetic Resonance Imaging by using
> a simple sum score. European Radiology, 2016, 26, 884-891.
2.3

80

A simple and robust classification tree for differentiation between benign and malignant lesions in
MR-mammography. European Radiology, 2013, 23, 2051-2060.

[^1]3.3

74

Diffusionâ€weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer. Journal of Magnetic Resonance Imaging, 2019, 50, 836-846.
37

> Diagnostic performance of multidetector computed tomographic (MDCTU) in upper tract urothelial
> carcinoma (UTUC): a systematic review and meta-analysis. World Journal of Urology, 2020, 38, 1165-1175.
$1.2 \quad 72$

Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer
38 with [68Ga]Ga-PSMA-11 PET/MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48,
3.3

72 1795-1805.

Sensitivity and Specificity of Unilateral Edema on T2w-TSE Sequences in MR-Mammography Considering	0.4
974 Histologically Verified Lesions. Breast Journal, 2010, 16, 233-239.	71

How to use the Kaiser score as a clinical decision rule for diagnosis in multiparametric breast MRI: a	1.6
pictorial essay. Insights Into Imaging, 2018, 9, 325-335.	

Magnetic resonance imaging of inflammatory breast carcinoma and acute mastitis. A comparative
study. European Radiology, 2008, 18, 2370-2380.

| 42 | Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and
 intensity-based optimization. Medical Image Analysis, 2013, 17, 209-218. | 7.0 | 66 |
| :--- | :--- | :--- | :--- | | Breast MRI used as a problem-solving tool reliably excludes malignancy. European Journal of |
| :--- |
| Radiology, 2015, 84, 61-64. |$\quad 1.2$

$$
44 \quad \text { A simple scoring system for breast MRI interpretation: does it compensate for reader experience?. }
$$ European Radiology, 2016, 26, 2529-2537.

$2.3 \quad 62$

45 Breast MRI as an adjunct to mammography: Does it really suffer from low specificity? a retrospective
 analysis stratified by mammographic BI-RADS classes. Acta Radiologica, 2010, 51, 715-721.
 A simple classification system (the Tree flowchart) for breast MRI can reduce the number of unnecessary biopsies in MRI-only lesions. European Radiology, 2017, 27, 3799-3809.
 46
 Bilateral Diffusion-weighted MR Imaging of Breast Tumors with Submillimeter Resolution Using Readout-segmented Echo-planar Imaging at 7 T. Radiology, 2015, 274, 74-84.

0.5

61
2.3

59

Is the ?blooming sign? a promising additional tool to determine malignancy in MR mammography?.
48 European Radiology, 2004, 14, 394-401.
2.3

57
$3.6 \quad 58$

Reliability of Serial Prostate Magnetic Resonance Imaging to Detect Prostate Cancer Progression
49 During Active Surveillance: A Systematic Review and Meta-analysis. European Urology, 2021, 80, 549-563.
0.9

53

Axillary lymphadenopathy at the time of COVID-19 vaccination: ten recommendations from the European Society of Breast Imaging (EUSOBI). Insights Into Imaging, 2021, 12, 119.
1.6

51

Diffusion-weighted Imaging Allows for Downgrading MR BI-RADS 4 Lesions in Contrast-enhanced MRI
of the Breast to Avoid Unnecessary Biopsy. Clinical Cancer Research, 2021, 27, 1941-1948.
3.2

51

Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced
magnetic resonance imaging of the breast at 7ÂT. European Radiology, 2014, 24, 913-920.

$$
\begin{aligned}
& 55 \text { Utility and limitations of 3-Tesla diffusion-weighted magnetic resonance imaging for differentiation } \\
& \text { of renal tumors. European Journal of Radiology, 2014, 83, 909-913. }
\end{aligned}
$$

Clinical MR Mammography: Impact of Hormonal Status on Background Enhancement and Diagnostic
56 Accuracy. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren,
2011, 183, 441-447.
57 Diffusionâ€weighted MRI of breast lesions: a prospective clinical investigation of the quantitative
1.646

Biomedicine, 2016, 29, 1445-1453.

58 Quantitative Multiparametric Breast Ultrasound. Investigative Radiology, 2019, 54, 257-264.
3.5

Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography|
 59 Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of

$1.1 \quad 45$
Tumor Heterogeneity: A Pilot Study. PLoS ONE, 2016, 11, e0155333.
60 Resolving arterial phase and temporal enhancement characteristics in DCE MRM at high spatial
resolution with TWIST acquisition. Journal of Magnetic Resonance Imaging, 2011, 34, 973-982.
1.9

44

$$
\begin{aligned}
& \text { 61 } \begin{array}{l}
\text { Multiparametric MR Imaging with High-Resolution Dynamic Contrast-enhanced and Diffusion-weighted } \\
\text { Imaging at } 7 \text { T Improves the Assessment of Breast Tumors: A Feasibility Study. Radiology, 2015, 276, } \\
360-370 \text {. }
\end{array} \\
& 62 \quad \begin{array}{l}
\text { Limited role of DWI with apparent diffusion coefficient mapping in breast lesions presenting as } \\
\text { non-mass enhancement on dynamic contrast-enhanced MRI. Breast Cancer Research, 2019, 21, } 136 .
\end{array} \\
& 63 \quad \begin{array}{l}
\text { The Adjacent Vessel Sign on Breast MRI: New Data and a Subgroup Analysis for 1,084 Histologically } \\
\text { Verified Cases. Korean Journal of Radiology, 2010, 11, 178. }
\end{array} \\
& 64 \begin{array}{l}
\text { Prospective evaluation of diffusion-weighted MRI of the bladder as a biomarker for prediction of } \\
\text { bladder cancer aggressiveness. Urologic Oncology: Seminars and Original Investigations, 2014, 32, } \\
\text { 1166-1171. }
\end{array} \\
& 65 \quad \begin{array}{l}
\text { Contrast-enhanced Mammography versus Contrast-enhanced Breast MRI: A Systematic Review and } \\
\text { Meta-Analysis. Radiology, 2022, 305, 94-103. }
\end{array}
\end{aligned}
$$

2.2

44
41
MRIâ€guided interventions of the breast. Journal of Magnetic Resonance Imaging, 2008, 27, 347-355.1.939
Combined magnetic resonance imaging of deep venous thrombosis and pulmonary arteries after a
2.3 39
67 single injection of a blood pool contrast agent. European Radiology, 2011, 21, 318-325.MR-guided vacuum-assisted breast biopsy of MRI-only lesions: a single center experience. European2.339
Radiology, 2016, 26, 3908-3916.
Computer-aided interpretation of dynamic magnetic resonance imaging reflects histopathology of 2.3
69 invasive breast cancer. European Radiology, 2010, 20, 1563-1571.38

Fat saturation in dynamic breast MRI at 3ÂTesla: is the Dixon technique superior to spectral fat saturation? A visual grading characteristics study. European Radiology, 2014, 24, 2213-2219.
73 Impact of the Kaiser score on clinical decision-making in BI-RADS 4 mammographic calcifications
examined with breast MRI. European Radiology, 2020, 30, 1451-1459.
2.3
38 examined with breast MRI. European Radiology, 2020, 30, 1451-1459.
8
74 Inflammatory Breast Carcinoma in Magnetic Resonance Imaging. Academic Radiology, 2008, 15, 209 -221.
1.3
37

75 Nonmass Lesions in Magnetic Resonance Imaging of the Breast. Journal of Computer Assisted

0.5

Tomography, 2011, 35, 361-366.

37
76 MRI Background Parenchymal Enhancement Is Not Associated with Breast Cancer. PLoS ONE, 2016, 11,
1.1 e0158573.
37
Is there a systematic bias of apparent diffusion coefficient (ADC) measurements of the breast if
77 measured on different workstations? An inter- and intra-reader agreement study. European Radiology,
$2.3 \quad 35$ 2016, 26, 2291-2296.
78 The Kaiser score reliably excludes malignancy in benign contrast-enhancing lesions classified as
$2.3 \quad 35$
BI-RADS 4 on breast MRI high-risk screening exams. European Radiology, 2020, 30, 6052-6061.
$0.5 \quad 34$
79 Magnetic Resonance Mammography of Invasive Lobular Versus Ductal Carcinoma. Journal of Computer
Assisted Tomography, 2010, 34, 587-595.

80 Identification of the Nervus Intermedius Using 3T MR Imaging. American Journal of Neuroradiology, 2011, 32, 460-464.

1.2

34
81 2D/3D image fusion of X-ray mammograms with breast MRI: visualizing dynamic contrast enhancement
in mammograms. International Journal of Computer Assisted Radiology and Surgery, 2012, 7, 339-348.

82 Breast lesions classified as probably benign (BI-RADS 3) on magnetic resonance imaging: a systematic review and meta-analysis. European Radiology, 2018, 28, 1919-1928.
2.3

34

83	Application of breast MRI for prediction of lymph node metastases â "s systematic approach using 17 individual descriptors and a dedicated decision tree. Acta Radiologica, 2010, 51, 885-894.	0.5	32
84	Evaluation of the early phase of Bellâ $€^{T M}$ s palsy using 3 ÂT MRI. European Archives of Oto-Rhino-Laryngology, 2011, 268, 1493-1500.	0.8	32
85	Rate of Malignancy in MRI-Detected Probably Benign (BI-RADS 3) Lesions. American Journal of Roentgenology, 2014, 202, 684-689.	1.0	32

86 Assessment of body composition in the advanced stage of castration-resistant prostate cancer: special
focus on sarcopenia. Prostate Cancer and Prostatic Diseases, 2020, 23, 309-315.

> Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography. European
> Journal of Radiology, 2020, 133, 109402.
1.2

32

A Multicentric Comparison of Apparent Diffusion Coefficient Mapping and the Kaiser Score in the
Assessment of Breast Lesions. Investigative Radiology, 2021, 56, 274-282.
3.5

31

Introduction of an Automated Userâ $€^{\text {"IIndependent }}$ Quantitative Volumetric Magnetic Resonance
89 Imaging Breast Density Measurement System Using the Dixon Sequence. Investigative Radiology, 2015,
3.5

30
50, 73-80.

91	Prospective evaluation of the performance of [68Ga]Ga-PSMA-11 PET/CT(MRI) for lymph node staging in patients undergoing superextended salvage lymph node dissection after radical prostatectomy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2169-2177.	3.3	30
92	Al-enhanced simultaneous multiparametric 18F-FDG PET/MRI for accurate breast cancer diagnosis. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 596-608.	3.3	30
93	Application of Computer-aided Diagnosis (CAD) in MR-Mammography (MRM). Academic Radiology, 2009, 16, 435-442.	1.3	29
94	3D T2-weighted imaging to shorten multiparametric prostate MRI protocols. European Radiology, 2018, 28, 1634-1641.	2.3	29
95	Quantitative Apparent Diffusion Coefficient Measurements Obtained by 3-Tesla MRI Are Correlated with Biomarkers of Bladder Cancer Proliferative Activity. PLoS ONE, 2014, 9, e106866.	1.1	29
96	Clinical application of Acoustic Radiation Force Impulse Imaging with Virtual Touch IQ in breast ultrasound: diagnostic performance and reproducibility of a new technique. Acta Radiologica, 2017, 58, 140-147.	0.5	28
97	Imaging Phenotypes in Women at High Risk for Breast Cancer on Mammography, Ultrasound, and Magnetic Resonance Imaging Using the Fifth Edition of the Breast Imaging Reporting and Data System. European Journal of Radiology, 2018, 106, 150-159.	1.2	28

98 Differential Diagnosis of Breast Lesions 5 mm or Less. Journal of Computer Assisted Tomography, 2010, 34, 456-464.

Dynamic Contrast-Enhanced Magnetic Resonance Imaging of Breast Tumors at 3 and 7 T. Investigative Radiology, 2014, 49, 354-362.

Respiratory motion artifacts during arterial phase imaging with gadoxetic acid: Can the injection 100 protocol minimize this drawback?. Journal of Magnetic Resonance Imaging, 2017, 46, 1107-1114.
1.9

27

101 Diffusionâ€Weighted MRI of Breast Cancer: Improved Lesion Visibility and Image Quality Using Synthetic
bâ€Values. Journal of Magnetic Resonance Imaging, 2019, 50, 1754-1761.

102 MRI for the assessment of malignancy in BI-RADS 4 mammographic microcalcifications. PLoS ONE, 2017, 12, e0188679.
1.1

26

Magnetic Resonance Mammography in Small vs. Advanced Breast Lesions - Systematic Comparison
103 Reveals Significant Impact of Lesion Size on Diagnostic Accuracy in 936 Histologically Verified Breast
$0.7 \quad 25$
Lesions. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2011, 183. 126-135

Association between survival in patients with primary invasive breast cancer and computer aided MRI.
104 Journal of Magnetic Resonance Imaging, 2013, 37, 146-155.
1.9

25

Impact of hybrid PET/MR technology on multiparametric imaging and treatment response assessment
105 of cervix cancer. Radiotherapy and Oncology, 2017, 125, 420-425.
0.3

25

MRI-based quantification of residual fibroglandular tissue of the breast after conservative mastectomies. European Journal of Radiology, 2018, 104, 1-7.
1.2

25

The contralateral synchronous breast carcinoma: a comparison of histology, localization, and
108 magnetic resonance imaging characteristics with the primary index cancer. Breast Cancer Research and Treatment, 2010, 120, 449-459.
Management of atypical lobular hyperplasia, atypical ductal hyperplasia, and lobular carcinoma in situ. Expert Review of Anticancer Therapy, 2016, 16, 335-346.
1.1

24

Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow
1.1

24 with dynamic FDG-PET/MRI in healthy subjects. EJNMMI Research, 2018, 8, 37.

Prognostic value of nutritional indices and body composition parameters including sarcopenia in
111 patients treated with radiotherapy for urothelial carcinoma of the bladder. Urologic Oncology:
0.8

24
Seminars and Original Investigations, 2019, 37, 372-379.
Application of artificial neural networks for the prediction of lymph node metastases to the
112 ipsilateral axilla â€" initial experience in 194 patients using magnetic resonance mammography. Acta
0.5 Radiologica, 2010, 51, 851-858.

113 Is breast MRI a helpful additional diagnostic test in suspicious mammographic microcalcifications?.
1.0

Magnetic Resonance Imaging, 2018, 46, 70-74.

Development of a Non-invasive Assessment of Hypoxia and Neovascularization with Magnetic
114 Resonance Imaging in Benign and Malignant Breast Tumors: Initial Results. Molecular Imaging and
$1.3 \quad 23$ Biology, 2019, 21, 758-770.
115 Breast MRI in the era of diffusion weighted imaging: do we still need signal-intensity time curves?.
European Radiology, 2020, 30, 47-56.
$2.3 \quad 23$
Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: A
systematic approach addressing the influence of network architecture on diagnostic performance
using a large clinical database. European Journal of Radiology, 2012,81, 1508-1513.

117 Diagnostic accuracy of 18F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3
T. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1656-1665.

Inter- and intra-observer agreement of BI-RADS-based subjective visual estimation of amount of
118 fibroglandular breast tissue with magnetic resonance imaging: comparison to automated quantitative
2.3 assessment. European Radiology, 2016, 26, 3917-3922.
Early response evaluation using CT-perfusion one day after transarterial chemoembolization for HCC
119 predicts treatment response and long-term disease control. European Journal of Radiology, 2017,90 ,
119 predicts treatment response and long-term disease control. European Journal of Radiology, 2017, 90,
$1.2 \quad 22$ 73-80.

Combined texture analysis and machine learning in suspicious calcifications detected by
120 mammography: Potential to avoid unnecessary stereotactical biopsies. European Journal of Radiology,
1.2

22 2020, 132, 109309.

Visual Grading Characteristics (VCC) Analysis of Diagnostic Image Quality for High Resolution 3 Tesla
121 MRI Volumetry of the Olfactory Bulb. Academic Radiology, 2011, 18, 634-639.
1.3

21
MRI Volumetry of the Olfactory Bulb. Academic Radiology, 2011, 18, 634-639.
Evaluation of 3.0-T MRI Brain Signal after Exposure to Gadoterate Meglumine in Women with High Breast Cancer Risk and Screening Breast MRI. Radiology, 2019, 293, 523-530.
3.6

21

Diagnostic performance of breast tumor tissue selection in diffusion weighted imaging: A systematic review and meta-analysis. PLoS ONE, 2020, 15, e0232856.
1.1

21

Kinetic analysis of lesions without mass effect on breast MRI using manual and computer-assisted methods. European Radiology, 2011, 21, 893-898.
127 Assessing the degree of collinearity among the lesion features of the MRI BI-RADS lexicon. European 1.2 19

Journal of Radiology, 2011, 80, e322-e324.
Effect of contrast agent on the results of <i>in vivo</i>¹H MRS of breast tumors â€" is it
128 clinically significant?. NMR in Biomedicine, 2012, 25, 67-74.
1.6
19
Quantitative Assessment of Breast Parenchymal Uptake on <sup> $18</$ sup $>$ F-FDG PET/CT: Correlation
with Age, Background Parenchymal Enhancement, and Amount of Fibroglandular Tissue on MRI.
Journal of Nuclear Medicine, 2016, $57,1518-1522$.
130 Study. Journal of Magnetic Resonance Imaging, 2020, 52, 589-595.

1.9

19
Potential of MR Mammography to Predict Tumor Grading of Invasive Breast Cancer. RoFo Fortschritte

Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2011, 183, 826-833. \quad| Diffusion weighted imaging of liver lesions suspect for metastases: Apparent diffusion coefficient |
| :--- |
| (ADC) values and lesion contrast are independent from Gd-EOB-DTPA administration. European Journal |
| of Radiology, 2012, 81, e849-e853. |$\quad 18.2$

Diffusion-weighted imaging of breast tumours at 3ÂTesla and 7ÂTesla: a comparison. European Radiology, 2016, 26, 1466-1473.

2.3
A new method to reduce false positive results in breast MRI by evaluation of multiple spectral regionsin proton MR-spectroscopy. European Journal of Radiology, 2017, 92, 51-57.

The Efficacy of MRI in the diagnostic workup of cystic fibrosis-associated liver disease: A clinical
139

Kinetic characteristics of ductal carcinoma in situ (DCIS) in dynamic breast MRI using
computer-assisted analysis. Acta Radiologica, 2010,51,955-961.
$0.5 \quad 17$
computer-assisted analysis. Acta Radiologica, 2010, 51, 955-961.

Imaging of lamination patterns of the adult human olfactory bulb and tract: In vitro comparison of standard- and high-resolution 3T MRI, and MR microscopy at 9.4T. Neurolmage, 2012, 60, 1662-1670.
$2.1 \quad 17$

Impact of post-processing methods on apparent diffusion coefficient values. European Radiology, 2017,
141 27, 946-955.
2.3

17

Protocol analysis of dual-energy CT for optimization of kidney stone detection in virtual
145
146

Multiparametric MRI of the prostate at 3ÂT: limited value of 3D 1 H-MR spectroscopy as a fourth parameter. World Journal of Urology, 2016, 34, 649-656.
$1.2 \quad 16$

Changes in Tumor Biology During Chemoradiation of Cervix Cancer Assessed by Multiparametric MRI
1.3
and Hypoxia PET. Molecular Imaging and Biology, 2018, 20, 160-169.
16

1473 Tesla breast MR imaging as a problem-solving tool: Diagnostic performance and incidental lesions.
1.1

PLoS ONE, 2018, 13, e0190287.
1.1

Motion artifacts, lesion type, and parenchymal enhancement in breast MRI: what does really influence
148 diagnostic accuracy?. Acta Radiologica, 2019, 60, 19-27.
0.5

16

Automated volumetric radiomic analysis of breast cancer vascularization improves survival
prediction in primary breast cancer. Scientific Reports, 2020, 10, 3664.
1.6

Rectal preparation significantly improves prostate imaging quality: Assessment of the PI-QUAL score with visual grading characteristics. European Journal of Radiology, 2022, 147, 110145.
1.2

16

151	Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologistsâ $€^{\text {TM }}$ Performance. Cancers, 2022, 14, 1743.	1.7	16
152	Can Color-Coded Parametric Maps Improve Dynamic Enhancement Pattern Analysis in MR Mammography?. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2010, 182, 254-260.	0.7	15
153	Cost-Effectiveness of Digital Breast Tomosynthesis vs. Abbreviated Breast MRI for Screening Women with Intermediate Risk of Breast Cancerâ€"How Low-Cost Must MRI Be?. Cancers, 2021, 13, 1241.	1.7	15
154	Vesical Imaging Reporting and Data System (VI-RADS): Are the individual MRI sequences equivalent in diagnostic performance of high grade NMIBC and MIBC?. European Journal of Radiology, 2021, 142, 109829.	1.2	15
155	Diagnosis of focal liver lesions suspected of metastases by diffusion-weighted imaging (DWI): systematic comparison favors free-breathing technique. Clinical Imaging, 2013, 37, 97-103.	0.8	14
156	Automated Detection and Segmentation of Nonmass-Enhancing Breast Tumors with Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Contrast Media and Molecular Imaging, 2018, 2018, 1-11.	0.4	14

Impact of androgen deprivation therapy on apparent diffusion coefficient and T2w MRI for histogram
and texture analysis with respect to focal radiotherapy of prostate cancer. Strahlentherapie Und
Onkologie, 2019, 195, 402-411.
Can supplementary contrast-enhanced MRI of the breast avoid needle biopsies in suspicious

microcalcifications seen on mammography? A systematic review and meta-analysis. Breast, 2021, 56,
53-60.

159 A survey by the European Society of Breast Imaging on the implementation of breast
$2.3 \quad 14$
diffusion-weighted imaging in clinical practice. European Radiology, 2022, 32, 6588-6597.
14

160 MR-Spectroscopy at 1.5 tesla and 3 tesla. Useful? A systematic review and meta-analysis. European
1.2

13

> A systematic comparison of two pulse sequences for edema assessment in MR-mammography. European Journal of Radiology, 2012, 81, 1500-1503.
1.2 13
163

Differentiation of Intrahepatic Cholangiocellular Carcinoma from Hepatocellular Carcinoma in the
Cirrhotic Liver Using Contrast-enhanced MR Imaging. Academic Radiology, 2017, 24, 1491-1500
1.3

13
Cirrhotic Liver Using Contrast-enhanced MR Imaging. Academic Radiology, 2017, 24, 1491-1500.

Synthetic 2-Dimensional Mammography Can Replace Digital Mammography as an Adjunct to Wide-Angle
164 Digital Breast Tomosynthesis. Investigative Radiology, 2019, 54, 83-88.
3.5

13

165 Does higher field strength translate into better diagnostic accuracy? A prospective comparison of
1.2
breast MRI at 3 and 1.5 Tesla. European Journal of Radiology, 2019, 114, 51-56.
13

Can we predict lesion detection rates in second-look ultrasound of MRI-detected breast lesions? A
systematic analysis. European Journal of Radiology, 2019, 113, 96-100.
1.2

13
Can the addition of clinical information improve the accuracy of PI-RADS version 2 for the diagnosis
of clinically significant prostate cancer in positive MRI?. Clinical Radiology, 2020, 75, 157.el-157.e7.
$0.5 \quad 13$

Correct determination of the enhancement curve is critical to ensure accurate diagnosis using the
Kaiser score as a clinical decision rule for breast MRI. European Journal of Radiology, 2021, 138, 109630.
1.2

13

169 The Necrosis Sign in Magnetic Resonance-Mammography: Diagnostic Accuracy in 1,084 Histologically

The hook sign for differential diagnosis of malignant from benign lesions in magnetic resonance
170 mammography: Experience in a study of 1084 histologically verified cases. Acta Radiologica, 2010, 51,
0.5 137-143.
Inter-observer variation and diagnostic efficacy of apparent diffusion coefficient (ADC) measurements
obtained by diffusion-weighted imaging (DWI) in small renal masses. Acta Radiologica, 2016, 57,
$1014-1020$.

Accuracy of fully automated, quantitative, volumetric measurement of the amount of fibroglandular
172 breast tissue using MRI: correlation with anthropomorphic breast phantoms. NMR in Biomedicine,
2017, 30, e3705.

173	Breast lesion detection and characterization with contrastâ€enhanced magnetic resonance imaging: Prospective randomized intraindividual comparison of gadoterate meglumine ($0.15 \mathrm{mmol} / \mathrm{kg}$) and gadobenate dimeglumine ($0.075 \mathrm{mmol} / \mathrm{kg}$) at 3T. Journal of Magnetic Resonance Imaging, 2019, 49, 1157-1165.	1.9	12
174	Multiparametric 18F-FDG PET/MRI of the Breast: Are There Differences in Imaging Biomarkers of Contralateral Healthy Tissue Between Patients With and Without Breast Cancer?. Journal of Nuclear Medicine, 2020, 61, 20-25.	2.8	12
175			

Combined Staging at One Stop Using MR Mammography: Evaluation of an Extended Protocol to Screen

for Distant Metastasis in Primary Breast Cancer â $€^{\prime \prime}$ Initial Results and Diagnostic Accuracy in a
0.7

Prospective Study. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden
11
Verfahren, 2012, 184, 618-623.
MR-mammography: high sensitivity but low specificity? New thoughts and fresh data on an old mantra.
European lournal of Radiology, 2012,81, S30-S32. European Journal of Radiology, 2012, 81, S30-S32.

Is â€œPrepectoral Edemaâ€•a Morphologic Sign for Malignant Breast Tumors?. Academic Radiology, 2015, 22, 684-689.
1.3

11

The breast lesion excision system (BLES) under stereotactic guidance cannot be used as a therapeutic

181	Stent-graft surface movement after endovascular aneurysm repair: baseline parameters for prediction, and association with migration and stent-graft-related endoleaks. European Radiology, 2019, 29, 6385-6395.	2.3	11
182	Substantial radiation dose reduction with consistent image quality using a novel low-dose stone composition protocol. World Journal of Urology, 2020, 38, 2971-2979.	1.2	11
183	Improvement of Visualization of the Intermediofacial Nerve in the Temporal Bone Using 3T Magnetic Resonance Imaging. Journal of Computer Assisted Tomography, 2009, 33, 782-788.	0.5	10
184	The prognostic role of preoperative serum C-reactive protein in predicting the biochemical recurrence in patients treated with radical prostatectomy. Prostate Cancer and Prostatic Diseases, 2016, 19, 163-167.	2.0	10
185	Visibility of significant prostate cancer on multiparametric magnetic resonance imaging (MRI)â€"do we still need contrast media?. European Radiology, 2021, 31, 3754-3764.	2.3	10
186	An Exception to Tumour Neoangiogenesis in a Malignant Breast-Lesion. Breast Journal, 2010, 16, 197-198.	0.4	9
187	Reproducibility and Repeatability of Volumetric Measurements for Olfactory Bulb Volumetry:. Academic Radiology, 2011, 18, 842-849.	1.3	9
188	Consensus Meeting of Breast Imaging: BI-RADSÅ® and Beyond. Breast Care, 2019, 14, 308-314.	0.8	9
189	A multiparametric [18F]FDG PET/MRI diagnostic model including imaging biomarkers of the tumor and contralateral healthy breast tissue aids breast cancer diagnosis. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1878-1888.	3.3	9
190	Sequential [¹⁸F]FDG-[¹⁸F]FMISO PET and Multiparametric MRI at 3T for Insights into Breast Cancer Heterogeneity and Correlation with Patient Outcomes: First Clinical Experience. Contrast Media and Molecular Imaging, 2019, 2019, 1-9.	0.4	9
191	Non-Invasive Assessment of Hypoxia and Neovascularization with MRI for Identification of Aggressive Breast Cancer. Cancers, 2020, 12, 2024.	1.7	9
192	Multiparametric ultrasound examination for response assessment in breast cancer patients undergoing neoadjuvant therapy. Scientific Reports, 2021, 11, 2501.	1.6	9
193	Supplemental screening using breast MRI in women with mammographically dense breasts. European Journal of Radiology, 2021, 136, 109513.	1.2	9

194 Comparison of simultaneous multi-slice single-shot DWI to readout-segmented DWI for evaluation of breast lesions at 3T MRI. European Journal of Radiology, 2021, 138, 109626.
1.29

Surgical management of multiple bilateral fibroadenoma of the breast: the Ribeiro technique modified by Rezai. Anticancer Research, 2009, 29, 2823-6.
0.5

Olfactory bulb ventricles as a frequent findingâ€"a myth or reality? Evaluation using high resolution 3
Tesla magnetic resonance imaging. Neuroscience, 2011, 172, 547-553.

200 The Assessment of Background Parenchymal Enhancement (BPE) in a High-Risk Population: What Causes
Density and tailored breast cancer screening: practice and prediction â€" an overview. Acta Radiologica
Open, 2018, 7, 205846011879121.

202 Apparent diffusion coefficient values obtained by unenhanced MRI predicts disease-specific survival in bladder cancer. Clinical Radiology, 2018, 73, 881-885.
205 Value of ductal obstruction sign in the differentiation of benign and malignant breast lesions at MR imaging. European Journal of Radiology, 2010, 75, e18-e21.Journal of Radiology, 2011, 79, e98-e102.
207 Three-Tesla dynamic contrast-enhanced MRI: a critical assessment of its use for differentiation ofrenal lesion subtypes. World Journal of Urology, 2014, 32, 215-220.

209	Influence of fat-water separation and spatial resolution on automated volumetric MRI measurements of fibroglandular breast tissue. NMR in Biomedicine, 2016, 29, 702-708.	1.6
210	A Simple Ultrasound Based Classification Algorithm Allows Differentiation of Benign from Malignant Breast Lesions by Using Only Quantitative Parameters. Molecular Imaging and Biology, 2018, 20, 1053-1060.	1.3
211	Response evaluation of SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus using 18F-FDG PET/MRI. BMJ Open Diabetes Research and Care, 2020, 8, e001135.	1.2
212	A risk stratification algorithm for lesions of uncertain malignant potential diagnosed by vacuum-assisted breast biopsy (VABB) of mammographic microcalcifications. European Journal of Radiology, 2021, 135, 109479.	1.2

213 The Mantra about Low of Breast MRI. , 2020, , 11-21. 7
221 Applications of artificial intelligence in prostate cancer imaging. Current Opinion in Urology, 2021, 31, 416-423.0.9223 Cost-Effectiveness of MR-Mammography in Breast Cancer Screening of Women With Extremely Dense223 Breasts After Two Rounds of Screening. Frontiers in Oncology, 2021, 11, 724543.1.36

3T MRI signal intensity profiles and thicknesses of transient zones in human fetal brain at mid-gestation. European Journal of Paediatric Neurology, 2021, 35, 67-73.
225 How much can abbreviated protocols for breast MRI increase patient throughput? a multi-centric evaluation. European Journal of Radiology, 2022, 154, 110436.

Reply to â€œBreast MRI background parenchymal enhancement (BPE) correlates with the risk of breast
cancerâ€: Magnetic Resonance Imaging, 2016, 34, 1337-1338.
227 Differentiation of ductal carcinoma in situ versus fibrocystic changes by magnetic resonance imaging: are there pathognomonic imaging features?. Acta Radiologica, 2017, 58, 1206-1214.
$0.5 \quad 5$
Multimodality Imaging of Breast Parenchymal Density and Correlation with Risk Assessment. Current Breast Cancer Reports, 2019, 11, 23-33.

Prostate-Specific Membrane Antigen (PSMA) Expression in Tumor-Associated Neovasculature Is an
235 Independent Prognostic Marker in Patients with Ovarian Cancer. Journal of Personalized Medicine, 2022, 12, 551.

236 Breast MRI: does a clinical decision algorithm outweigh reader experience?. European Radiology, 2022, 32, 6557-6564.
237 Co-registration of MR-mammography and X-ray mammography. European Journal of Radiology, 2012, 81, S27-S29.
Potential of MR-mammography for identification of intraductual papillomas. European Journal of Radiology, 2012, 81, S33-S34.

A simple and robust classification tree for differentiation between benign and malignant lesions in
MR-mammography. European lournal of Radiology, 2012, 81, S4-S5. MR-mammography. European Journal of Radiology, 2012, 81, S4-S5.
1.2

Assessment of the kidney function parameters split function, mean transit time, and outflow efficiency using dynamic FDG-PET/MRI in healthy subjects. European Journal of Hybrid Imaging, 2019, 3, 3.
0.6

Intra- and inter-observer variability in dependence of T1-time correction for common dynamic
241 contrast enhanced MRI parameters in prostate cancer patients. European Journal of Radiology, 2019,
1.23 116, 27-33.

242 4D perfusion CT of prostate cancer for image-guided radiotherapy planning: A proof of concept study. PLoS ONE, 2019, 14, e0225673.
243 Knowledgeâ€Assisted Comparative Assessment of Breast Cancer using Dynamic Contrastâ€Enhanced

243 Magnetic Resonance Imaging. Computer Graphics Forum, 2020, 39, 13-23.
Influence of aging and gadolinium exposure on $\mathrm{T} 1, \mathrm{~T} 2$, and T^{*}-relaxation in healthy women with an
244 increased risk of breast cancer with and without prior exposure to gadoterate meglumine at 3.0-T brain MR imaging. European Radiology, 2022, 32, 331-345.
Application of Classification Trees for the Qualitative Differentiation of Focal Liver Lesions
245 Suspicious for Metastasis in Gadolinium-EOB-DTPA-Enhanced Liver MR Imaging. RoFo Fortschritte Auf
$0.7 \quad 2$ Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2012, 184, 788-794.

246 Kinetic characterization of non-mass lesions on breast MRI using manual and computer assisted methods. European Journal of Radiology, 2012, 81, S177-S178.

Dixon imaging-based partial volume correction improves quantification of choline detected by breast 3D-MRSI. European Radiology, 2015, 25, 830-836.

248 MR spectroscopy in the breast clinic is improving. European Journal of Radiology, 2012, 81, S104-S106.
1.2

1

249 L-COSY of breast cancer at 3T. European Journal of Radiology, 2012, 81, S129-S131.
1.2

4D co-registration of X-ray and MR-mammograms: initial clinical results and potential incremental diagnostic value. Clinical Imaging, 2015, 39, 225-230.

```
253 PET/MRI in cervical cancer: Insights into tumor biology.. Journal of Clinical Oncology, 2015, 33,
5597-5597.
```

Image based registration between full x-ray and spot mammograms for x-ray guided stereotactic breast biopsy., 2022, , .

Feasibility and Optimal Time Point of [68Ga]Gallium-labeled Prostate-specific Membrane Antigen Ligand
255 Positron Emission Tomography Imaging in Patients Undergoing Cytoreductive Surgery After Systemic Therapy for Primary Oligometastatic Prostate Cancer: Implications for Patient Selection and Extent of $0.2 \quad 1$ Surgerv. European Uroloovv Open Science, 2022, 40, 117-124.

256 MRI Breast Density Assessment: An Imaging Biomarker for Identification of Women at an Increased Risk of Breast Cancer. Annals of Oncology, 2013, 24, iii29.

$$
401 \text { MRI-based spatially resolved quantitative diffusivity measurements reflect proliferative activity of }
$$

0.1

bladder cancer. European Urology Supplements, 2016, 15, e401.
259 bladder cancer. European Urology Supplements, 2016, 15, e401.0.1Perirenal Edema as a potential hint towards primary hypertensionâ $€$ "Preliminary findings in MRI breastcancer staging. European Journal of Radiology Open, 2016, 3, 123-126.
0.70
Focal transitional mastitis in MR-Mammography: Preliminary findings. European Journal of Radiology261 Open, 2016, 3, 117-122.

The value of â€œconstant sharpnessâ€•as a diagnostic sign in MR-Mammography. European Journal of Radiology Open, 2016, 3, 236-238.
0.7

Differential impact of radiation therapy after radical prostatectomy on recurrence patterns: an
266 assessment using [68Ga]Ga-PSMA ligand PET/CT(MRI). Prostate Cancer and Prostatic Diseases, 2021, 24,
2.0 439-447.

> Eine multizentrische Studie zum Vergleich von ADC Mapping und dem Kaiser Score in der Beurteilung von Subzentimeter Brustlãsionen. ,2021, 193, .

0

Vergleich von ADC Mapping mit dem Kaiser-Score zur Beurteilung von MammalÃsionen: Eine
268 multizentrische Studie. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden
0.7 Verfahren, 2021, 193, .
Clinical management of patients with suspected breast-cancer: A multicentric comparison of Apparent
269 Diffusion Coefficient Mapping (ADC) and the Kaiser Score (KS). Senologie-Zeitschrift FÃ1/4r
0.0
0
Mammadiagnostik Und -therapie, 2021, 18, .

Effect of multiparametric MRI of the breast on diagnostic accuracy.. Journal of Clinical Oncology,

Automatisierte MRT Analyse von Mammakarzinomen: Potential zur Risikostratifikation bei Patientinnen

| 276 | vor neoadjuvanter Therapie?. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der
 Bildgebenden Verfahren, 2019, 191, . |
| :--- | :--- | Bildgebenden Verfahren, 2019, 191, .

277 Application of DWI in abbreviated breast MRI (ABM): quantitative tissue analysis increases diagnostic-performance within a short examination time. , 2019, 16, .

278 Automated radiomic MRI phenotyping improves survival prediction in primary breast-cancer. , 2019, 16, .

[^0]: Source: https:/|exaly.com/author-pdf/4194018/publications.pdf
 Version: 2024-02-01

[^1]: Comparison of FDG-PET/CT and contrast-enhanced CT for monitoring therapy response in patients with
 35 metastatic breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44,
 1428-1437.

