Paulo Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4193413/publications.pdf

Version: 2024-02-01

686830 552369 1,036 94 13 26 citations h-index g-index papers 101 101 101 849 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Head-mounted display versus desktop for 3D navigation in virtual reality: a user study. Multimedia Tools and Applications, 2009, 41, 161-181.	2.6	188
2	Using Virtual Reality to Increase Motivation in Poststroke Rehabilitation. IEEE Computer Graphics and Applications, 2019, 39, 64-70.	1.0	74
3	Self calibration of multiple LIDARs and cameras on autonomous vehicles. Robotics and Autonomous Systems, 2016, 83, 326-337.	3.0	56
4	Learning Auditory Space: Generalization and Long-Term Effects. PLoS ONE, 2013, 8, e77900.	1.1	37
5	Remote collaboration in maintenance contexts using augmented reality: insights from a participatory process. International Journal on Interactive Design and Manufacturing, 2022, 16, 419-438.	1.3	36
6	3D Reconstruction of Real World Scenes Using a Low-Cost 3D Range Scanner. Computer-Aided Civil and Infrastructure Engineering, 2006, 21, 486-497.	6.3	30
7	Comparing Spatial and Mobile Augmented Reality for Guiding Assembling Procedures with Task Validation. , 2019, , .		29
8	Using augmented reality for industrial quality assurance: a shop floor user study. International Journal of Advanced Manufacturing Technology, 2021, 115, 105-116.	1.5	29
9	Augmented reality situated visualization in decision-making. Multimedia Tools and Applications, 2022, 81, 14749-14772.	2.6	29
10	A critical analysis on remote collaboration mediated by Augmented Reality: Making a case for improved characterization and evaluation of the collaborative process. Computers and Graphics, 2022, 102, 619-633.	1.4	28
11	Serious Games for Stroke Telerehabilitation of Upper Limb - A Review for Future Research. International Journal of Telerehabilitation, 2020, 12, 65-76.	0.7	27
12	Registration and fusion of intensity and range data for 3D modelling of real world scenes., 0,,.		25
13	A vision for contextualized evaluation of remote collaboration supported by AR. Computers and Graphics, 2022, 102, 413-425.	1.4	23
14	Automatic registration of laser reflectance and colour intensity images for 3D reconstruction. Robotics and Autonomous Systems, 2002, 39, 157-168.	3.0	22
15	Comparing augmented reality visualization methods for assembly procedures. Virtual Reality, 2022, 26, 235-248.	4.1	17
16	A ROS framework for the extrinsic calibration of intelligent vehicles: A multi-sensor, multi-modal approach. Robotics and Autonomous Systems, 2020, 131, 103558.	3.0	17
17	Situated Visualization in The Decision Process Through Augmented Reality. , 2019, , .		14
18	On the Use of Virtual Reality for Medical Imaging Visualization. Journal of Digital Imaging, 2021, 34, 1034-1048.	1.6	14

#	Article	IF	CITATIONS
19	Remote Asynchronous Collaboration in Maintenance scenarios using Augmented Reality and Annotations., 2021,,.		13
20	Interaction with Virtual Content using Augmented Reality. Proceedings of the ACM on Human-Computer Interaction, 2020, 4, 1-17.	2.5	13
21	Evaluation of a Mobile Augmented Reality Game Application as an Outdoor Learning Tool. International Journal of Mobile and Blended Learning, 2019, 11, 59-79.	0.5	12
22	Developing 3D Freehand Gesture-Based Interaction Methods for Virtual Walkthroughs. Advances in Human and Social Aspects of Technology Book Series, 2016, , 52-72.	0.3	11
23	Teaching 3D modelling and visualization using VTK. Computers and Graphics, 2008, 32, 363-370.	1.4	10
24	Integrating User Studies into Computer Graphics-Related Courses. IEEE Computer Graphics and Applications, 2011, 31, 14-17.	1.0	9
25	3D-2D Laser Range Finder Calibration Using a Conic Based Geometry Shape. Lecture Notes in Computer Science, 2012, , 312-319.	1.0	9
26	Using Heuristic Evaluation to Foster Visualization Analysis and Design Skills. IEEE Computer Graphics and Applications, 2016, 36, 86-90.	1.0	9
27	Rich and robust human-robot interaction on gesture recognition for assembly tasks. , 2017, , .		9
28	Detection of Aerial Balls in Robotic Soccer Using a Mixture of Color and Depth Information., 2015,,.		8
29	Incremental scenario representations for autonomous driving using geometric polygonal primitives. Robotics and Autonomous Systems, 2016, 83, 312-325.	3.0	8
30	A Conceptual Model for Data Collection and Analysis for AR-based Remote Collaboration Evaluation. , 2020, , .		8
31	Pervasive augmented reality for indoor uninterrupted experiences. , 2019, , .		8
32	Comparing Desktop vs. Mobile Interaction for the Creation of Pervasive Augmented Reality Experiences. Journal of Imaging, 2022, 8, 79.	1.7	8
33	Incremental texture mapping for autonomous driving. Robotics and Autonomous Systems, 2016, 84, 113-128.	3.0	7
34	Effect of hand-avatar in a selection task using a tablet as input device in an immersive virtual environment. , 2017, , .		7
35	Heuristic Evaluation in Visualization: An Empirical Study: Position paper., 2018,,.		7
36	A Toolkit to Evaluate and Characterize the Collaborative Process in Scenarios of Remote Collaboration Supported by AR. , 2021, , .		7

#	Article	IF	Citations
37	Enhancement of RGB-D Image Alignment Using Fiducial Markers. Sensors, 2020, 20, 1497.	2.1	6
38	Automatic Calibration of Multiple LIDAR Sensors Using a Moving Sphere as Target. Advances in Intelligent Systems and Computing, 2016, , 477-489.	0.5	6
39	ATOM: A general calibration framework for multi-modal, multi-sensor systems. Expert Systems With Applications, 2022, 207, 118000.	4.4	6
40	Student Projects Involving Novel Interaction with Large Displays. IEEE Computer Graphics and Applications, 2014, 34, 80-86.	1.0	5
41	Construction of a web-based geographical information system – the case of "Ria de Aveiro―region. Anatolia, 2016, 27, 71-81.	1.3	5
42	Mobile devices for interaction in immersive virtual environments., 2018,,.		5
43	Multi-Sensor Extrinsic Calibration Using an Extended Set of Pairwise Geometric Transformations. Sensors, 2020, 20, 6717.	2.1	5
44	A General Approach to the Extrinsic Calibration of Intelligent Vehicles Using ROS. Advances in Intelligent Systems and Computing, 2020, , 203-215.	0.5	5
45	Developing and Evaluating Two Gestural-Based Virtual Environment Navigation Methods for Large Displays. Lecture Notes in Computer Science, 2015, , 141-151.	1.0	5
46	Scene Representations for Autonomous Driving: An Approach Based on Polygonal Primitives. Advances in Intelligent Systems and Computing, 2016, , 503-515.	0.5	5
47	Wiimote as an Input Device in Google Earth Visualization and Navigation: A User Study Comparing Two Alternatives. , 2010, , .		4
48	Implementation and Evaluation of an Enhanced H-tree Layout Pedigree Visualization. , $2012, \ldots$		4
49	A New Approach for 3D Craniometric Measurements Using 3D Skull Models. , 2013, , .		4
50	Extending the H-Tree Layout Pedigree: An Evaluation. , 2013, , .		4
51	CraMs: Craniometric Analysis Application Using 3D Skull Models. IEEE Computer Graphics and Applications, 2015, 35, 11-17.	1.0	4
52	Representation of continuously changing data over time and space: Modeling the shape of spatiotemporal phenomena. , $2016, $, .		4
53	Evaluating and enhancing google tango localization in indoor environments using fiducial markers. , 2018, , .		4
54	2D lidar to kinematic chain calibration using planar features of indoor scenes. Industrial Robot, 2020, 47, 647-655.	1.2	4

#	Article	IF	CITATIONS
55	Robust Texture Mapping Using RGB-D Cameras. Sensors, 2021, 21, 3248.	2.1	4
56	Combining Intensity and Range Images for 3D Architectural Modelling., 2001,, 139-145.		4
57	Sampling strategies to create moving regions from real world observations. , 2020, , .		4
58	Usability in virtual and augmented environments: a qualitative and quantitative study., 2007,,.		3
59	A Framework for the Management of Deformable Moving Objects. Lecture Notes in Geoinformation and Cartography, 2018, , 327-346.	0.5	3
60	An Exploratory Study on the use of Virtual Reality in Balance Rehabilitation*., 2019, 2019, 3416-3419.		3
61	Towards a qualitative analysis of interpolation methods for deformable moving regions. , 2019, , .		3
62	Adaptive Augmented Reality User Interfaces Using Face Recognition for Smart Home Control. Advances in Intelligent Systems and Computing, 2020, , 15-19.	0.5	3
63	Using Augmented Reality and Step by Step Verification in Industrial Quality Control. Advances in Intelligent Systems and Computing, 2021, , 350-355.	0.5	3
64	Heuristic Evaluation in Information Visualization Using Three Sets of Heuristics: An Exploratory Study. Lecture Notes in Computer Science, 2015, , 259-270.	1.0	3
65	Evaluating preprocessing and interpolation strategies to create moving regions from real-world observations. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on Applied Computing, 2020, 20, 46-58.	0.5	3
66	Using 3D Reconstruction to create Pervasive Augmented Reality Experiences: A comparison. , 2022, , .		3
67	3D reconstruction and spatial auralization of the Painted Dolmen of Antelas. , 2008, , .		2
68	DETI-Interact: Interaction with Large Displays in Public Spaces Using the Kinect. Lecture Notes in Computer Science, 2014, , 196-206.	1.0	2
69	Freehand Gesture-Based 3D Manipulation Methods for Interaction with Large Displays. Lecture Notes in Computer Science, 2017, , 145-158.	1.0	2
70	3D Reconstruction of Soccer Sequences Using Non-calibrated Video Cameras. Lecture Notes in Computer Science, 2007, , 1254-1264.	1.0	2
71	Living Globe: Tridimensional Interactive Visualization of World Demographic Data. Lecture Notes in Computer Science, 2016, , 14-24.	1.0	2
72	A Robust 3D-Based Color Correction Approach for Texture Mapping Applications. Sensors, 2022, 22, 1730.	2.1	2

#	Article	IF	CITATIONS
73	Exploring an Augmented Reality Serious Game for Motorized Wheelchair Control. , 2022, , .		2
74	Preliminary Usability Evaluation of PolyMeCo: A Visualization Based Tool for Mesh Analysis and Comparison. , 2007, , .		1
75	Information Visualization in Facility Location and Vehicle Routing Decisions. , 2010, , .		1
76	Evaluation in visualization: some issues and best practices. Proceedings of SPIE, 2013, , .	0.8	1
77	Platform for setting up interactive virtual environments. , 2014, , .		1
78	Towards automatic non-metric traits analysis on 3D models of skulls. , 2016, , .		1
79	Visual vs Auditory Augmented Reality for Indoor Guidance. , 2021, , .		1
80	A Framework for Cerebral CT Perfusion Imaging Methods Comparison. Lecture Notes in Computer Science, 2010, , 141-150.	1.0	1
81	Results from Geospatial Analysis of Resistivity to Delineate Contamination Anomalies: A Case Study of a Controlled Dump ―North Portugal. , 2012, , .		1
82	An Exploratory Study on the Predictive Capacity of Heuristic Evaluation in Visualization Applications. Lecture Notes in Computer Science, 2017, , 369-383.	1.0	1
83	An Evaluation of Smoothing and Remeshing Techniques to Represent the Evolution of Real-World Phenomena. Lecture Notes in Computer Science, 2018, , 57-67.	1.0	1
84	Configuration and Use of Pervasive Augmented Reality Interfaces in a Smart Home Context: A Prototype. Advances in Intelligent Systems and Computing, 2020, , 96-102.	0.5	1
85	Visually exploring a Collaborative Augmented Reality Taxonomy. , 2021, , .		1
86	Does Size Matter? Exploring how Standard and Large-Scale Displays affect Off-site Experts during AR-Remote Collaboration. , 2022, , .		1
87	Exploring New Ways of Integration, Visualization and Interaction with Geotechnical and Geophysical Data. , 2010, , .		0
88	3D visualization of geophysical resistivity data to delineate contamination anomalies in a landfill. , 2012, , .		0
89	Comparing two input devices for virtual walkthroughs using a Head Mounted Display (HMD). , 2014, , .		0
90	Investigating Landfill Contamination by Visualizing Geophysical Data. IEEE Computer Graphics and Applications, 2014, 34, 16-21.	1.0	0

#	Article	IF	CITATIONS
91	Morphological Analysis of 3D Skull Models for Ancestry Estimation. , 2018, , .		O
92	Monitoring System for Patients with Cognitive Impairment Using Mobile Devices. , 2019, , .		0
93	A Ground Truth Vision System for Robotic Soccer. , 2016, , .		O
94	Camera Location and Aperture Characterization Using the Transformation between a 2D Plane and the Image Captured by the Camera. Lecture Notes in Computer Science, 2008, , 385-394.	1.0	0